This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007) (Revised by Mario Carneiro, 7-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncph.6 | |- U = <. <. + , x. >. , abs >. |
|
| Assertion | cncph | |- U e. CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncph.6 | |- U = <. <. + , x. >. , abs >. |
|
| 2 | eqid | |- <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >. |
|
| 3 | 2 | cnnv | |- <. <. + , x. >. , abs >. e. NrmCVec |
| 4 | mulm1 | |- ( y e. CC -> ( -u 1 x. y ) = -u y ) |
|
| 5 | 4 | adantl | |- ( ( x e. CC /\ y e. CC ) -> ( -u 1 x. y ) = -u y ) |
| 6 | 5 | oveq2d | |- ( ( x e. CC /\ y e. CC ) -> ( x + ( -u 1 x. y ) ) = ( x + -u y ) ) |
| 7 | negsub | |- ( ( x e. CC /\ y e. CC ) -> ( x + -u y ) = ( x - y ) ) |
|
| 8 | 6 7 | eqtrd | |- ( ( x e. CC /\ y e. CC ) -> ( x + ( -u 1 x. y ) ) = ( x - y ) ) |
| 9 | 8 | fveq2d | |- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x + ( -u 1 x. y ) ) ) = ( abs ` ( x - y ) ) ) |
| 10 | 9 | oveq1d | |- ( ( x e. CC /\ y e. CC ) -> ( ( abs ` ( x + ( -u 1 x. y ) ) ) ^ 2 ) = ( ( abs ` ( x - y ) ) ^ 2 ) ) |
| 11 | 10 | oveq2d | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x + ( -u 1 x. y ) ) ) ^ 2 ) ) = ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x - y ) ) ^ 2 ) ) ) |
| 12 | sqabsadd | |- ( ( x e. CC /\ y e. CC ) -> ( ( abs ` ( x + y ) ) ^ 2 ) = ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) ) ) |
|
| 13 | sqabssub | |- ( ( x e. CC /\ y e. CC ) -> ( ( abs ` ( x - y ) ) ^ 2 ) = ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) - ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) ) ) |
|
| 14 | 12 13 | oveq12d | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x - y ) ) ^ 2 ) ) = ( ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) ) + ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) - ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) ) ) ) |
| 15 | abscl | |- ( x e. CC -> ( abs ` x ) e. RR ) |
|
| 16 | 15 | recnd | |- ( x e. CC -> ( abs ` x ) e. CC ) |
| 17 | 16 | sqcld | |- ( x e. CC -> ( ( abs ` x ) ^ 2 ) e. CC ) |
| 18 | abscl | |- ( y e. CC -> ( abs ` y ) e. RR ) |
|
| 19 | 18 | recnd | |- ( y e. CC -> ( abs ` y ) e. CC ) |
| 20 | 19 | sqcld | |- ( y e. CC -> ( ( abs ` y ) ^ 2 ) e. CC ) |
| 21 | addcl | |- ( ( ( ( abs ` x ) ^ 2 ) e. CC /\ ( ( abs ` y ) ^ 2 ) e. CC ) -> ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) e. CC ) |
|
| 22 | 17 20 21 | syl2an | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) e. CC ) |
| 23 | 2cn | |- 2 e. CC |
|
| 24 | cjcl | |- ( y e. CC -> ( * ` y ) e. CC ) |
|
| 25 | mulcl | |- ( ( x e. CC /\ ( * ` y ) e. CC ) -> ( x x. ( * ` y ) ) e. CC ) |
|
| 26 | 24 25 | sylan2 | |- ( ( x e. CC /\ y e. CC ) -> ( x x. ( * ` y ) ) e. CC ) |
| 27 | recl | |- ( ( x x. ( * ` y ) ) e. CC -> ( Re ` ( x x. ( * ` y ) ) ) e. RR ) |
|
| 28 | 27 | recnd | |- ( ( x x. ( * ` y ) ) e. CC -> ( Re ` ( x x. ( * ` y ) ) ) e. CC ) |
| 29 | 26 28 | syl | |- ( ( x e. CC /\ y e. CC ) -> ( Re ` ( x x. ( * ` y ) ) ) e. CC ) |
| 30 | mulcl | |- ( ( 2 e. CC /\ ( Re ` ( x x. ( * ` y ) ) ) e. CC ) -> ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) e. CC ) |
|
| 31 | 23 29 30 | sylancr | |- ( ( x e. CC /\ y e. CC ) -> ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) e. CC ) |
| 32 | 22 31 22 | ppncand | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) ) + ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) - ( 2 x. ( Re ` ( x x. ( * ` y ) ) ) ) ) ) = ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) |
| 33 | 14 32 | eqtrd | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x - y ) ) ^ 2 ) ) = ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) |
| 34 | 2times | |- ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) e. CC -> ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) = ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) |
|
| 35 | 34 | eqcomd | |- ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) e. CC -> ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) |
| 36 | 22 35 | syl | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) + ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) |
| 37 | 33 36 | eqtrd | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x - y ) ) ^ 2 ) ) = ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) |
| 38 | 11 37 | eqtrd | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x + ( -u 1 x. y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) |
| 39 | 38 | rgen2 | |- A. x e. CC A. y e. CC ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x + ( -u 1 x. y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) |
| 40 | addex | |- + e. _V |
|
| 41 | mulex | |- x. e. _V |
|
| 42 | absf | |- abs : CC --> RR |
|
| 43 | cnex | |- CC e. _V |
|
| 44 | fex | |- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
|
| 45 | 42 43 44 | mp2an | |- abs e. _V |
| 46 | cnaddabloOLD | |- + e. AbelOp |
|
| 47 | ablogrpo | |- ( + e. AbelOp -> + e. GrpOp ) |
|
| 48 | 46 47 | ax-mp | |- + e. GrpOp |
| 49 | ax-addf | |- + : ( CC X. CC ) --> CC |
|
| 50 | 49 | fdmi | |- dom + = ( CC X. CC ) |
| 51 | 48 50 | grporn | |- CC = ran + |
| 52 | 51 | isphg | |- ( ( + e. _V /\ x. e. _V /\ abs e. _V ) -> ( <. <. + , x. >. , abs >. e. CPreHilOLD <-> ( <. <. + , x. >. , abs >. e. NrmCVec /\ A. x e. CC A. y e. CC ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x + ( -u 1 x. y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) ) ) |
| 53 | 40 41 45 52 | mp3an | |- ( <. <. + , x. >. , abs >. e. CPreHilOLD <-> ( <. <. + , x. >. , abs >. e. NrmCVec /\ A. x e. CC A. y e. CC ( ( ( abs ` ( x + y ) ) ^ 2 ) + ( ( abs ` ( x + ( -u 1 x. y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( abs ` x ) ^ 2 ) + ( ( abs ` y ) ^ 2 ) ) ) ) ) |
| 54 | 3 39 53 | mpbir2an | |- <. <. + , x. >. , abs >. e. CPreHilOLD |
| 55 | 1 54 | eqeltri | |- U e. CPreHilOLD |