This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007) (Revised by Mario Carneiro, 7-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncph.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| Assertion | cncph | ⊢ 𝑈 ∈ CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncph.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| 2 | eqid | ⊢ 〈 〈 + , · 〉 , abs 〉 = 〈 〈 + , · 〉 , abs 〉 | |
| 3 | 2 | cnnv | ⊢ 〈 〈 + , · 〉 , abs 〉 ∈ NrmCVec |
| 4 | mulm1 | ⊢ ( 𝑦 ∈ ℂ → ( - 1 · 𝑦 ) = - 𝑦 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( - 1 · 𝑦 ) = - 𝑦 ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + ( - 1 · 𝑦 ) ) = ( 𝑥 + - 𝑦 ) ) |
| 7 | negsub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + - 𝑦 ) = ( 𝑥 − 𝑦 ) ) | |
| 8 | 6 7 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + ( - 1 · 𝑦 ) ) = ( 𝑥 − 𝑦 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 + ( - 1 · 𝑦 ) ) ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( 𝑥 + ( - 1 · 𝑦 ) ) ) ↑ 2 ) = ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ↑ 2 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 + ( - 1 · 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ↑ 2 ) ) ) |
| 12 | sqabsadd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ) ) | |
| 13 | sqabssub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) − ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ) ) | |
| 14 | 12 13 | oveq12d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ↑ 2 ) ) = ( ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ) + ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) − ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ) ) ) |
| 15 | abscl | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) | |
| 16 | 15 | recnd | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℂ ) |
| 17 | 16 | sqcld | ⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ) |
| 18 | abscl | ⊢ ( 𝑦 ∈ ℂ → ( abs ‘ 𝑦 ) ∈ ℝ ) | |
| 19 | 18 | recnd | ⊢ ( 𝑦 ∈ ℂ → ( abs ‘ 𝑦 ) ∈ ℂ ) |
| 20 | 19 | sqcld | ⊢ ( 𝑦 ∈ ℂ → ( ( abs ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) |
| 21 | addcl | ⊢ ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ∧ ( ( abs ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) → ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ∈ ℂ ) | |
| 22 | 17 20 21 | syl2an | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ∈ ℂ ) |
| 23 | 2cn | ⊢ 2 ∈ ℂ | |
| 24 | cjcl | ⊢ ( 𝑦 ∈ ℂ → ( ∗ ‘ 𝑦 ) ∈ ℂ ) | |
| 25 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ∗ ‘ 𝑦 ) ∈ ℂ ) → ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ∈ ℂ ) | |
| 26 | 24 25 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ∈ ℂ ) |
| 27 | recl | ⊢ ( ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ∈ ℂ → ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ∈ ℝ ) | |
| 28 | 27 | recnd | ⊢ ( ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ∈ ℂ → ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 29 | 26 28 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 30 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ∈ ℂ ) → ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ∈ ℂ ) | |
| 31 | 23 29 30 | sylancr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ∈ ℂ ) |
| 32 | 22 31 22 | ppncand | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ) + ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) − ( 2 · ( ℜ ‘ ( 𝑥 · ( ∗ ‘ 𝑦 ) ) ) ) ) ) = ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 33 | 14 32 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ↑ 2 ) ) = ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 34 | 2times | ⊢ ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ∈ ℂ → ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) = ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) | |
| 35 | 34 | eqcomd | ⊢ ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ∈ ℂ → ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 36 | 22 35 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) + ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 37 | 33 36 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 − 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 38 | 11 37 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 + ( - 1 · 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 39 | 38 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 + ( - 1 · 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) |
| 40 | addex | ⊢ + ∈ V | |
| 41 | mulex | ⊢ · ∈ V | |
| 42 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 43 | cnex | ⊢ ℂ ∈ V | |
| 44 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
| 45 | 42 43 44 | mp2an | ⊢ abs ∈ V |
| 46 | cnaddabloOLD | ⊢ + ∈ AbelOp | |
| 47 | ablogrpo | ⊢ ( + ∈ AbelOp → + ∈ GrpOp ) | |
| 48 | 46 47 | ax-mp | ⊢ + ∈ GrpOp |
| 49 | ax-addf | ⊢ + : ( ℂ × ℂ ) ⟶ ℂ | |
| 50 | 49 | fdmi | ⊢ dom + = ( ℂ × ℂ ) |
| 51 | 48 50 | grporn | ⊢ ℂ = ran + |
| 52 | 51 | isphg | ⊢ ( ( + ∈ V ∧ · ∈ V ∧ abs ∈ V ) → ( 〈 〈 + , · 〉 , abs 〉 ∈ CPreHilOLD ↔ ( 〈 〈 + , · 〉 , abs 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 + ( - 1 · 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 53 | 40 41 45 52 | mp3an | ⊢ ( 〈 〈 + , · 〉 , abs 〉 ∈ CPreHilOLD ↔ ( 〈 〈 + , · 〉 , abs 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑥 + ( - 1 · 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( abs ‘ 𝑥 ) ↑ 2 ) + ( ( abs ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 54 | 3 39 53 | mpbir2an | ⊢ 〈 〈 + , · 〉 , abs 〉 ∈ CPreHilOLD |
| 55 | 1 54 | eqeltri | ⊢ 𝑈 ∈ CPreHilOLD |