This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnaddabl . Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnaddabloOLD | |- + e. AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | |- CC e. _V |
|
| 2 | ax-addf | |- + : ( CC X. CC ) --> CC |
|
| 3 | addass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
|
| 4 | 0cn | |- 0 e. CC |
|
| 5 | addlid | |- ( x e. CC -> ( 0 + x ) = x ) |
|
| 6 | negcl | |- ( x e. CC -> -u x e. CC ) |
|
| 7 | addcom | |- ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) ) |
|
| 8 | 6 7 | mpdan | |- ( x e. CC -> ( x + -u x ) = ( -u x + x ) ) |
| 9 | negid | |- ( x e. CC -> ( x + -u x ) = 0 ) |
|
| 10 | 8 9 | eqtr3d | |- ( x e. CC -> ( -u x + x ) = 0 ) |
| 11 | 1 2 3 4 5 6 10 | isgrpoi | |- + e. GrpOp |
| 12 | 2 | fdmi | |- dom + = ( CC X. CC ) |
| 13 | addcom | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) |
|
| 14 | 11 12 13 | isabloi | |- + e. AbelOp |