This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfshiftioo.a | |- ( ph -> A e. RR ) |
|
| cncfshiftioo.b | |- ( ph -> B e. RR ) |
||
| cncfshiftioo.c | |- C = ( A (,) B ) |
||
| cncfshiftioo.t | |- ( ph -> T e. RR ) |
||
| cncfshiftioo.d | |- D = ( ( A + T ) (,) ( B + T ) ) |
||
| cncfshiftioo.f | |- ( ph -> F e. ( C -cn-> CC ) ) |
||
| cncfshiftioo.g | |- G = ( x e. D |-> ( F ` ( x - T ) ) ) |
||
| Assertion | cncfshiftioo | |- ( ph -> G e. ( D -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfshiftioo.a | |- ( ph -> A e. RR ) |
|
| 2 | cncfshiftioo.b | |- ( ph -> B e. RR ) |
|
| 3 | cncfshiftioo.c | |- C = ( A (,) B ) |
|
| 4 | cncfshiftioo.t | |- ( ph -> T e. RR ) |
|
| 5 | cncfshiftioo.d | |- D = ( ( A + T ) (,) ( B + T ) ) |
|
| 6 | cncfshiftioo.f | |- ( ph -> F e. ( C -cn-> CC ) ) |
|
| 7 | cncfshiftioo.g | |- G = ( x e. D |-> ( F ` ( x - T ) ) ) |
|
| 8 | ioosscn | |- ( A (,) B ) C_ CC |
|
| 9 | 8 | a1i | |- ( ph -> ( A (,) B ) C_ CC ) |
| 10 | 4 | recnd | |- ( ph -> T e. CC ) |
| 11 | eqeq1 | |- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
|
| 12 | 11 | rexbidv | |- ( w = x -> ( E. z e. ( A (,) B ) w = ( z + T ) <-> E. z e. ( A (,) B ) x = ( z + T ) ) ) |
| 13 | oveq1 | |- ( z = y -> ( z + T ) = ( y + T ) ) |
|
| 14 | 13 | eqeq2d | |- ( z = y -> ( x = ( z + T ) <-> x = ( y + T ) ) ) |
| 15 | 14 | cbvrexvw | |- ( E. z e. ( A (,) B ) x = ( z + T ) <-> E. y e. ( A (,) B ) x = ( y + T ) ) |
| 16 | 12 15 | bitrdi | |- ( w = x -> ( E. z e. ( A (,) B ) w = ( z + T ) <-> E. y e. ( A (,) B ) x = ( y + T ) ) ) |
| 17 | 16 | cbvrabv | |- { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } = { x e. CC | E. y e. ( A (,) B ) x = ( y + T ) } |
| 18 | 3 | oveq1i | |- ( C -cn-> CC ) = ( ( A (,) B ) -cn-> CC ) |
| 19 | 6 18 | eleqtrdi | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 20 | eqid | |- ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } |-> ( F ` ( x - T ) ) ) = ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } |-> ( F ` ( x - T ) ) ) |
|
| 21 | 9 10 17 19 20 | cncfshift | |- ( ph -> ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } |-> ( F ` ( x - T ) ) ) e. ( { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } -cn-> CC ) ) |
| 22 | 1 2 4 | iooshift | |- ( ph -> ( ( A + T ) (,) ( B + T ) ) = { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) |
| 23 | 5 22 | eqtrid | |- ( ph -> D = { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) |
| 24 | 23 | mpteq1d | |- ( ph -> ( x e. D |-> ( F ` ( x - T ) ) ) = ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } |-> ( F ` ( x - T ) ) ) ) |
| 25 | 7 24 | eqtrid | |- ( ph -> G = ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } |-> ( F ` ( x - T ) ) ) ) |
| 26 | 23 | oveq1d | |- ( ph -> ( D -cn-> CC ) = ( { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } -cn-> CC ) ) |
| 27 | 21 25 26 | 3eltr4d | |- ( ph -> G e. ( D -cn-> CC ) ) |