This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iooshift.1 | |- ( ph -> A e. RR ) |
|
| iooshift.2 | |- ( ph -> B e. RR ) |
||
| iooshift.3 | |- ( ph -> T e. RR ) |
||
| Assertion | iooshift | |- ( ph -> ( ( A + T ) (,) ( B + T ) ) = { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooshift.1 | |- ( ph -> A e. RR ) |
|
| 2 | iooshift.2 | |- ( ph -> B e. RR ) |
|
| 3 | iooshift.3 | |- ( ph -> T e. RR ) |
|
| 4 | eqeq1 | |- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
|
| 5 | 4 | rexbidv | |- ( w = x -> ( E. z e. ( A (,) B ) w = ( z + T ) <-> E. z e. ( A (,) B ) x = ( z + T ) ) ) |
| 6 | 5 | elrab | |- ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } <-> ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) |
| 7 | simprr | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> E. z e. ( A (,) B ) x = ( z + T ) ) |
|
| 8 | nfv | |- F/ z ph |
|
| 9 | nfv | |- F/ z x e. CC |
|
| 10 | nfre1 | |- F/ z E. z e. ( A (,) B ) x = ( z + T ) |
|
| 11 | 9 10 | nfan | |- F/ z ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) |
| 12 | 8 11 | nfan | |- F/ z ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) |
| 13 | nfv | |- F/ z x e. ( ( A + T ) (,) ( B + T ) ) |
|
| 14 | simp3 | |- ( ( ph /\ z e. ( A (,) B ) /\ x = ( z + T ) ) -> x = ( z + T ) ) |
|
| 15 | 1 3 | readdcld | |- ( ph -> ( A + T ) e. RR ) |
| 16 | 15 | rexrd | |- ( ph -> ( A + T ) e. RR* ) |
| 17 | 16 | adantr | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( A + T ) e. RR* ) |
| 18 | 2 3 | readdcld | |- ( ph -> ( B + T ) e. RR ) |
| 19 | 18 | rexrd | |- ( ph -> ( B + T ) e. RR* ) |
| 20 | 19 | adantr | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( B + T ) e. RR* ) |
| 21 | ioossre | |- ( A (,) B ) C_ RR |
|
| 22 | 21 | a1i | |- ( ph -> ( A (,) B ) C_ RR ) |
| 23 | 22 | sselda | |- ( ( ph /\ z e. ( A (,) B ) ) -> z e. RR ) |
| 24 | 3 | adantr | |- ( ( ph /\ z e. ( A (,) B ) ) -> T e. RR ) |
| 25 | 23 24 | readdcld | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( z + T ) e. RR ) |
| 26 | 1 | adantr | |- ( ( ph /\ z e. ( A (,) B ) ) -> A e. RR ) |
| 27 | 26 | rexrd | |- ( ( ph /\ z e. ( A (,) B ) ) -> A e. RR* ) |
| 28 | 2 | adantr | |- ( ( ph /\ z e. ( A (,) B ) ) -> B e. RR ) |
| 29 | 28 | rexrd | |- ( ( ph /\ z e. ( A (,) B ) ) -> B e. RR* ) |
| 30 | simpr | |- ( ( ph /\ z e. ( A (,) B ) ) -> z e. ( A (,) B ) ) |
|
| 31 | ioogtlb | |- ( ( A e. RR* /\ B e. RR* /\ z e. ( A (,) B ) ) -> A < z ) |
|
| 32 | 27 29 30 31 | syl3anc | |- ( ( ph /\ z e. ( A (,) B ) ) -> A < z ) |
| 33 | 26 23 24 32 | ltadd1dd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( A + T ) < ( z + T ) ) |
| 34 | iooltub | |- ( ( A e. RR* /\ B e. RR* /\ z e. ( A (,) B ) ) -> z < B ) |
|
| 35 | 27 29 30 34 | syl3anc | |- ( ( ph /\ z e. ( A (,) B ) ) -> z < B ) |
| 36 | 23 28 24 35 | ltadd1dd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( z + T ) < ( B + T ) ) |
| 37 | 17 20 25 33 36 | eliood | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( z + T ) e. ( ( A + T ) (,) ( B + T ) ) ) |
| 38 | 37 | 3adant3 | |- ( ( ph /\ z e. ( A (,) B ) /\ x = ( z + T ) ) -> ( z + T ) e. ( ( A + T ) (,) ( B + T ) ) ) |
| 39 | 14 38 | eqeltrd | |- ( ( ph /\ z e. ( A (,) B ) /\ x = ( z + T ) ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
| 40 | 39 | 3exp | |- ( ph -> ( z e. ( A (,) B ) -> ( x = ( z + T ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> ( z e. ( A (,) B ) -> ( x = ( z + T ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) ) ) |
| 42 | 12 13 41 | rexlimd | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> ( E. z e. ( A (,) B ) x = ( z + T ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) ) |
| 43 | 7 42 | mpd | |- ( ( ph /\ ( x e. CC /\ E. z e. ( A (,) B ) x = ( z + T ) ) ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
| 44 | 6 43 | sylan2b | |- ( ( ph /\ x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
| 45 | elioore | |- ( x e. ( ( A + T ) (,) ( B + T ) ) -> x e. RR ) |
|
| 46 | 45 | adantl | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. RR ) |
| 47 | 46 | recnd | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. CC ) |
| 48 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 49 | 48 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> A e. RR* ) |
| 50 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 51 | 50 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> B e. RR* ) |
| 52 | 3 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> T e. RR ) |
| 53 | 46 52 | resubcld | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) e. RR ) |
| 54 | 1 | recnd | |- ( ph -> A e. CC ) |
| 55 | 3 | recnd | |- ( ph -> T e. CC ) |
| 56 | 54 55 | pncand | |- ( ph -> ( ( A + T ) - T ) = A ) |
| 57 | 56 | eqcomd | |- ( ph -> A = ( ( A + T ) - T ) ) |
| 58 | 57 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> A = ( ( A + T ) - T ) ) |
| 59 | 15 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) e. RR ) |
| 60 | 16 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) e. RR* ) |
| 61 | 19 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( B + T ) e. RR* ) |
| 62 | simpr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. ( ( A + T ) (,) ( B + T ) ) ) |
|
| 63 | ioogtlb | |- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) < x ) |
|
| 64 | 60 61 62 63 | syl3anc | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( A + T ) < x ) |
| 65 | 59 46 52 64 | ltsub1dd | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( ( A + T ) - T ) < ( x - T ) ) |
| 66 | 58 65 | eqbrtrd | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> A < ( x - T ) ) |
| 67 | 18 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( B + T ) e. RR ) |
| 68 | iooltub | |- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x < ( B + T ) ) |
|
| 69 | 60 61 62 68 | syl3anc | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x < ( B + T ) ) |
| 70 | 46 67 52 69 | ltsub1dd | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) < ( ( B + T ) - T ) ) |
| 71 | 2 | recnd | |- ( ph -> B e. CC ) |
| 72 | 71 55 | pncand | |- ( ph -> ( ( B + T ) - T ) = B ) |
| 73 | 72 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( ( B + T ) - T ) = B ) |
| 74 | 70 73 | breqtrd | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) < B ) |
| 75 | 49 51 53 66 74 | eliood | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( x - T ) e. ( A (,) B ) ) |
| 76 | 55 | adantr | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> T e. CC ) |
| 77 | 47 76 | npcand | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> ( ( x - T ) + T ) = x ) |
| 78 | 77 | eqcomd | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x = ( ( x - T ) + T ) ) |
| 79 | oveq1 | |- ( z = ( x - T ) -> ( z + T ) = ( ( x - T ) + T ) ) |
|
| 80 | 79 | rspceeqv | |- ( ( ( x - T ) e. ( A (,) B ) /\ x = ( ( x - T ) + T ) ) -> E. z e. ( A (,) B ) x = ( z + T ) ) |
| 81 | 75 78 80 | syl2anc | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> E. z e. ( A (,) B ) x = ( z + T ) ) |
| 82 | 47 81 6 | sylanbrc | |- ( ( ph /\ x e. ( ( A + T ) (,) ( B + T ) ) ) -> x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) |
| 83 | 44 82 | impbida | |- ( ph -> ( x e. { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } <-> x e. ( ( A + T ) (,) ( B + T ) ) ) ) |
| 84 | 83 | eqrdv | |- ( ph -> { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } = ( ( A + T ) (,) ( B + T ) ) ) |
| 85 | 84 | eqcomd | |- ( ph -> ( ( A + T ) (,) ( B + T ) ) = { w e. CC | E. z e. ( A (,) B ) w = ( z + T ) } ) |