This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfshift.a | |- ( ph -> A C_ CC ) |
|
| cncfshift.t | |- ( ph -> T e. CC ) |
||
| cncfshift.b | |- B = { x e. CC | E. y e. A x = ( y + T ) } |
||
| cncfshift.f | |- ( ph -> F e. ( A -cn-> CC ) ) |
||
| cncfshift.g | |- G = ( x e. B |-> ( F ` ( x - T ) ) ) |
||
| Assertion | cncfshift | |- ( ph -> G e. ( B -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfshift.a | |- ( ph -> A C_ CC ) |
|
| 2 | cncfshift.t | |- ( ph -> T e. CC ) |
|
| 3 | cncfshift.b | |- B = { x e. CC | E. y e. A x = ( y + T ) } |
|
| 4 | cncfshift.f | |- ( ph -> F e. ( A -cn-> CC ) ) |
|
| 5 | cncfshift.g | |- G = ( x e. B |-> ( F ` ( x - T ) ) ) |
|
| 6 | cncff | |- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
|
| 7 | 4 6 | syl | |- ( ph -> F : A --> CC ) |
| 8 | 7 | adantr | |- ( ( ph /\ x e. B ) -> F : A --> CC ) |
| 9 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 10 | 9 3 | eleqtrdi | |- ( ( ph /\ x e. B ) -> x e. { x e. CC | E. y e. A x = ( y + T ) } ) |
| 11 | rabid | |- ( x e. { x e. CC | E. y e. A x = ( y + T ) } <-> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
|
| 12 | 10 11 | sylib | |- ( ( ph /\ x e. B ) -> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
| 13 | 12 | simprd | |- ( ( ph /\ x e. B ) -> E. y e. A x = ( y + T ) ) |
| 14 | oveq1 | |- ( x = ( y + T ) -> ( x - T ) = ( ( y + T ) - T ) ) |
|
| 15 | 14 | 3ad2ant3 | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = ( ( y + T ) - T ) ) |
| 16 | 1 | sselda | |- ( ( ph /\ y e. A ) -> y e. CC ) |
| 17 | 2 | adantr | |- ( ( ph /\ y e. A ) -> T e. CC ) |
| 18 | 16 17 | pncand | |- ( ( ph /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
| 19 | 18 | adantlr | |- ( ( ( ph /\ x e. B ) /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
| 20 | 19 | 3adant3 | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( ( y + T ) - T ) = y ) |
| 21 | 15 20 | eqtrd | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = y ) |
| 22 | simp2 | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> y e. A ) |
|
| 23 | 21 22 | eqeltrd | |- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) e. A ) |
| 24 | 23 | rexlimdv3a | |- ( ( ph /\ x e. B ) -> ( E. y e. A x = ( y + T ) -> ( x - T ) e. A ) ) |
| 25 | 13 24 | mpd | |- ( ( ph /\ x e. B ) -> ( x - T ) e. A ) |
| 26 | 8 25 | ffvelcdmd | |- ( ( ph /\ x e. B ) -> ( F ` ( x - T ) ) e. CC ) |
| 27 | 26 5 | fmptd | |- ( ph -> G : B --> CC ) |
| 28 | fvoveq1 | |- ( a = ( x - T ) -> ( abs ` ( a - b ) ) = ( abs ` ( ( x - T ) - b ) ) ) |
|
| 29 | 28 | breq1d | |- ( a = ( x - T ) -> ( ( abs ` ( a - b ) ) < z <-> ( abs ` ( ( x - T ) - b ) ) < z ) ) |
| 30 | 29 | imbrov2fvoveq | |- ( a = ( x - T ) -> ( ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) |
| 31 | 30 | rexralbidv | |- ( a = ( x - T ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) |
| 32 | 31 | ralbidv | |- ( a = ( x - T ) -> ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) |
| 33 | 4 | adantr | |- ( ( ph /\ x e. B ) -> F e. ( A -cn-> CC ) ) |
| 34 | 1 | adantr | |- ( ( ph /\ x e. B ) -> A C_ CC ) |
| 35 | ssid | |- CC C_ CC |
|
| 36 | elcncf | |- ( ( A C_ CC /\ CC C_ CC ) -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) ) |
|
| 37 | 34 35 36 | sylancl | |- ( ( ph /\ x e. B ) -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) ) |
| 38 | 33 37 | mpbid | |- ( ( ph /\ x e. B ) -> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) |
| 39 | 38 | simprd | |- ( ( ph /\ x e. B ) -> A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) |
| 40 | 32 39 25 | rspcdva | |- ( ( ph /\ x e. B ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
| 41 | 40 | adantrr | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
| 42 | simprr | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> w e. RR+ ) |
|
| 43 | rspa | |- ( ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) /\ w e. RR+ ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
|
| 44 | 41 42 43 | syl2anc | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
| 45 | simpl1l | |- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) -> ph ) |
|
| 46 | 45 | adantr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ph ) |
| 47 | simp1rl | |- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) -> x e. B ) |
|
| 48 | 47 | ad2antrr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> x e. B ) |
| 49 | simplr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> v e. B ) |
|
| 50 | 5 | fvmpt2 | |- ( ( x e. B /\ ( F ` ( x - T ) ) e. CC ) -> ( G ` x ) = ( F ` ( x - T ) ) ) |
| 51 | 9 26 50 | syl2anc | |- ( ( ph /\ x e. B ) -> ( G ` x ) = ( F ` ( x - T ) ) ) |
| 52 | 51 | 3adant3 | |- ( ( ph /\ x e. B /\ v e. B ) -> ( G ` x ) = ( F ` ( x - T ) ) ) |
| 53 | fvoveq1 | |- ( x = v -> ( F ` ( x - T ) ) = ( F ` ( v - T ) ) ) |
|
| 54 | simpr | |- ( ( ph /\ v e. B ) -> v e. B ) |
|
| 55 | 7 | adantr | |- ( ( ph /\ v e. B ) -> F : A --> CC ) |
| 56 | eleq1w | |- ( x = v -> ( x e. B <-> v e. B ) ) |
|
| 57 | 56 | anbi2d | |- ( x = v -> ( ( ph /\ x e. B ) <-> ( ph /\ v e. B ) ) ) |
| 58 | oveq1 | |- ( x = v -> ( x - T ) = ( v - T ) ) |
|
| 59 | 58 | eleq1d | |- ( x = v -> ( ( x - T ) e. A <-> ( v - T ) e. A ) ) |
| 60 | 57 59 | imbi12d | |- ( x = v -> ( ( ( ph /\ x e. B ) -> ( x - T ) e. A ) <-> ( ( ph /\ v e. B ) -> ( v - T ) e. A ) ) ) |
| 61 | 60 25 | chvarvv | |- ( ( ph /\ v e. B ) -> ( v - T ) e. A ) |
| 62 | 55 61 | ffvelcdmd | |- ( ( ph /\ v e. B ) -> ( F ` ( v - T ) ) e. CC ) |
| 63 | 5 53 54 62 | fvmptd3 | |- ( ( ph /\ v e. B ) -> ( G ` v ) = ( F ` ( v - T ) ) ) |
| 64 | 63 | 3adant2 | |- ( ( ph /\ x e. B /\ v e. B ) -> ( G ` v ) = ( F ` ( v - T ) ) ) |
| 65 | 52 64 | oveq12d | |- ( ( ph /\ x e. B /\ v e. B ) -> ( ( G ` x ) - ( G ` v ) ) = ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) |
| 66 | 65 | fveq2d | |- ( ( ph /\ x e. B /\ v e. B ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) |
| 67 | 46 48 49 66 | syl3anc | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) |
| 68 | simpr | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
|
| 69 | 12 | simpld | |- ( ( ph /\ x e. B ) -> x e. CC ) |
| 70 | 69 | adantr | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> x e. CC ) |
| 71 | 3 | ssrab3 | |- B C_ CC |
| 72 | 71 | sseli | |- ( v e. B -> v e. CC ) |
| 73 | 72 | adantl | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> v e. CC ) |
| 74 | 2 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> T e. CC ) |
| 75 | 70 73 74 | nnncan2d | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( ( x - T ) - ( v - T ) ) = ( x - v ) ) |
| 76 | 75 | fveq2d | |- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
| 77 | 76 | adantr | |- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
| 78 | simpr | |- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
|
| 79 | 77 78 | eqbrtrd | |- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
| 80 | 46 48 49 68 79 | syl1111anc | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
| 81 | oveq2 | |- ( b = ( v - T ) -> ( ( x - T ) - b ) = ( ( x - T ) - ( v - T ) ) ) |
|
| 82 | 81 | fveq2d | |- ( b = ( v - T ) -> ( abs ` ( ( x - T ) - b ) ) = ( abs ` ( ( x - T ) - ( v - T ) ) ) ) |
| 83 | 82 | breq1d | |- ( b = ( v - T ) -> ( ( abs ` ( ( x - T ) - b ) ) < z <-> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) ) |
| 84 | fveq2 | |- ( b = ( v - T ) -> ( F ` b ) = ( F ` ( v - T ) ) ) |
|
| 85 | 84 | oveq2d | |- ( b = ( v - T ) -> ( ( F ` ( x - T ) ) - ( F ` b ) ) = ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) |
| 86 | 85 | fveq2d | |- ( b = ( v - T ) -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) |
| 87 | 86 | breq1d | |- ( b = ( v - T ) -> ( ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w <-> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) |
| 88 | 83 87 | imbi12d | |- ( b = ( v - T ) -> ( ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) ) |
| 89 | simpll3 | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) |
|
| 90 | 46 49 61 | syl2anc | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( v - T ) e. A ) |
| 91 | 88 89 90 | rspcdva | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) |
| 92 | 80 91 | mpd | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) |
| 93 | 67 92 | eqbrtrd | |- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) |
| 94 | 93 | ex | |- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) -> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
| 95 | 94 | ralrimiva | |- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
| 96 | 95 | 3exp | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( z e. RR+ -> ( A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) ) |
| 97 | 96 | reximdvai | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
| 98 | 44 97 | mpd | |- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
| 99 | 98 | ralrimivva | |- ( ph -> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
| 100 | 71 | a1i | |- ( ph -> B C_ CC ) |
| 101 | elcncf | |- ( ( B C_ CC /\ CC C_ CC ) -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) ) |
|
| 102 | 100 35 101 | sylancl | |- ( ph -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) ) |
| 103 | nfcv | |- F/_ x RR+ |
|
| 104 | nfcv | |- F/_ x B |
|
| 105 | nfv | |- F/ x ( abs ` ( a - v ) ) < z |
|
| 106 | nfcv | |- F/_ x abs |
|
| 107 | nfmpt1 | |- F/_ x ( x e. B |-> ( F ` ( x - T ) ) ) |
|
| 108 | 5 107 | nfcxfr | |- F/_ x G |
| 109 | nfcv | |- F/_ x a |
|
| 110 | 108 109 | nffv | |- F/_ x ( G ` a ) |
| 111 | nfcv | |- F/_ x - |
|
| 112 | nfcv | |- F/_ x v |
|
| 113 | 108 112 | nffv | |- F/_ x ( G ` v ) |
| 114 | 110 111 113 | nfov | |- F/_ x ( ( G ` a ) - ( G ` v ) ) |
| 115 | 106 114 | nffv | |- F/_ x ( abs ` ( ( G ` a ) - ( G ` v ) ) ) |
| 116 | nfcv | |- F/_ x < |
|
| 117 | nfcv | |- F/_ x w |
|
| 118 | 115 116 117 | nfbr | |- F/ x ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w |
| 119 | 105 118 | nfim | |- F/ x ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
| 120 | 104 119 | nfralw | |- F/ x A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
| 121 | 103 120 | nfrexw | |- F/ x E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
| 122 | 103 121 | nfralw | |- F/ x A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) |
| 123 | nfv | |- F/ a A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) |
|
| 124 | fvoveq1 | |- ( a = x -> ( abs ` ( a - v ) ) = ( abs ` ( x - v ) ) ) |
|
| 125 | 124 | breq1d | |- ( a = x -> ( ( abs ` ( a - v ) ) < z <-> ( abs ` ( x - v ) ) < z ) ) |
| 126 | 125 | imbrov2fvoveq | |- ( a = x -> ( ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
| 127 | 126 | rexralbidv | |- ( a = x -> ( E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
| 128 | 127 | ralbidv | |- ( a = x -> ( A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) |
| 129 | 122 123 128 | cbvralw | |- ( A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) |
| 130 | 129 | bicomi | |- ( A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) <-> A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) |
| 131 | 130 | anbi2i | |- ( ( G : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) |
| 132 | 102 131 | bitr4di | |- ( ph -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) ) |
| 133 | 27 99 132 | mpbir2and | |- ( ph -> G e. ( B -cn-> CC ) ) |