This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfshiftioo.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| cncfshiftioo.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cncfshiftioo.c | ⊢ 𝐶 = ( 𝐴 (,) 𝐵 ) | ||
| cncfshiftioo.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| cncfshiftioo.d | ⊢ 𝐷 = ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) | ||
| cncfshiftioo.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ ℂ ) ) | ||
| cncfshiftioo.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) | ||
| Assertion | cncfshiftioo | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfshiftioo.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | cncfshiftioo.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | cncfshiftioo.c | ⊢ 𝐶 = ( 𝐴 (,) 𝐵 ) | |
| 4 | cncfshiftioo.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 5 | cncfshiftioo.d | ⊢ 𝐷 = ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) | |
| 6 | cncfshiftioo.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ ℂ ) ) | |
| 7 | cncfshiftioo.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) | |
| 8 | ioosscn | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 10 | 4 | recnd | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 11 | eqeq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) | |
| 12 | 11 | rexbidv | ⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
| 15 | 14 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) |
| 16 | 12 15 | bitrdi | ⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
| 17 | 16 | cbvrabv | ⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } |
| 18 | 3 | oveq1i | ⊢ ( 𝐶 –cn→ ℂ ) = ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) |
| 19 | 6 18 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 20 | eqid | ⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) | |
| 21 | 9 10 17 19 20 | cncfshift | ⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ∈ ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) ) |
| 22 | 1 2 4 | iooshift | ⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 23 | 5 22 | eqtrid | ⊢ ( 𝜑 → 𝐷 = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 24 | 23 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
| 25 | 7 24 | eqtrid | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
| 26 | 23 | oveq1d | ⊢ ( 𝜑 → ( 𝐷 –cn→ ℂ ) = ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) ) |
| 27 | 21 25 26 | 3eltr4d | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 –cn→ ℂ ) ) |