This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " W is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscusp2.1 | |- B = ( Base ` W ) |
|
| iscusp2.2 | |- U = ( UnifSt ` W ) |
||
| iscusp2.3 | |- J = ( TopOpen ` W ) |
||
| Assertion | iscusp2 | |- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` B ) ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusp2.1 | |- B = ( Base ` W ) |
|
| 2 | iscusp2.2 | |- U = ( UnifSt ` W ) |
|
| 3 | iscusp2.3 | |- J = ( TopOpen ` W ) |
|
| 4 | iscusp | |- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
|
| 5 | 1 | fveq2i | |- ( Fil ` B ) = ( Fil ` ( Base ` W ) ) |
| 6 | 2 | fveq2i | |- ( CauFilU ` U ) = ( CauFilU ` ( UnifSt ` W ) ) |
| 7 | 6 | eleq2i | |- ( c e. ( CauFilU ` U ) <-> c e. ( CauFilU ` ( UnifSt ` W ) ) ) |
| 8 | 3 | oveq1i | |- ( J fLim c ) = ( ( TopOpen ` W ) fLim c ) |
| 9 | 8 | neeq1i | |- ( ( J fLim c ) =/= (/) <-> ( ( TopOpen ` W ) fLim c ) =/= (/) ) |
| 10 | 7 9 | imbi12i | |- ( ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) <-> ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) |
| 11 | 5 10 | raleqbii | |- ( A. c e. ( Fil ` B ) ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) <-> A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) |
| 12 | 11 | anbi2i | |- ( ( W e. UnifSp /\ A. c e. ( Fil ` B ) ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) ) <-> ( W e. UnifSp /\ A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
| 13 | 4 12 | bitr4i | |- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` B ) ( c e. ( CauFilU ` U ) -> ( J fLim c ) =/= (/) ) ) ) |