This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilucfil4 | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) /\ C e. ( Fil ` X ) ) -> ( C e. ( CauFilU ` ( metUnif ` D ) ) <-> C e. ( CauFil ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfilucfil3 | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( ( C e. ( Fil ` X ) /\ C e. ( CauFilU ` ( metUnif ` D ) ) ) <-> C e. ( CauFil ` D ) ) ) |
|
| 2 | cfilfil | |- ( ( D e. ( *Met ` X ) /\ C e. ( CauFil ` D ) ) -> C e. ( Fil ` X ) ) |
|
| 3 | 2 | ex | |- ( D e. ( *Met ` X ) -> ( C e. ( CauFil ` D ) -> C e. ( Fil ` X ) ) ) |
| 4 | 3 | adantl | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( C e. ( CauFil ` D ) -> C e. ( Fil ` X ) ) ) |
| 5 | 4 | pm4.71rd | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( C e. ( CauFil ` D ) <-> ( C e. ( Fil ` X ) /\ C e. ( CauFil ` D ) ) ) ) |
| 6 | 1 5 | bitrd | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( ( C e. ( Fil ` X ) /\ C e. ( CauFilU ` ( metUnif ` D ) ) ) <-> ( C e. ( Fil ` X ) /\ C e. ( CauFil ` D ) ) ) ) |
| 7 | pm5.32 | |- ( ( C e. ( Fil ` X ) -> ( C e. ( CauFilU ` ( metUnif ` D ) ) <-> C e. ( CauFil ` D ) ) ) <-> ( ( C e. ( Fil ` X ) /\ C e. ( CauFilU ` ( metUnif ` D ) ) ) <-> ( C e. ( Fil ` X ) /\ C e. ( CauFil ` D ) ) ) ) |
|
| 8 | 6 7 | sylibr | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( C e. ( Fil ` X ) -> ( C e. ( CauFilU ` ( metUnif ` D ) ) <-> C e. ( CauFil ` D ) ) ) ) |
| 9 | 8 | 3impia | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) /\ C e. ( Fil ` X ) ) -> ( C e. ( CauFilU ` ( metUnif ` D ) ) <-> C e. ( CauFil ` D ) ) ) |