This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmsusp.x | |- X = ( Base ` F ) |
|
| xmsusp.d | |- D = ( ( dist ` F ) |` ( X X. X ) ) |
||
| xmsusp.u | |- U = ( UnifSt ` F ) |
||
| Assertion | xmsusp | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmsusp.x | |- X = ( Base ` F ) |
|
| 2 | xmsusp.d | |- D = ( ( dist ` F ) |` ( X X. X ) ) |
|
| 3 | xmsusp.u | |- U = ( UnifSt ` F ) |
|
| 4 | simp3 | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> U = ( metUnif ` D ) ) |
|
| 5 | simp1 | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> X =/= (/) ) |
|
| 6 | 1 2 | xmsxmet | |- ( F e. *MetSp -> D e. ( *Met ` X ) ) |
| 7 | 6 | 3ad2ant2 | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> D e. ( *Met ` X ) ) |
| 8 | xmetpsmet | |- ( D e. ( *Met ` X ) -> D e. ( PsMet ` X ) ) |
|
| 9 | metuust | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( metUnif ` D ) e. ( UnifOn ` X ) ) |
|
| 10 | 8 9 | sylan2 | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( metUnif ` D ) e. ( UnifOn ` X ) ) |
| 11 | 5 7 10 | syl2anc | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> ( metUnif ` D ) e. ( UnifOn ` X ) ) |
| 12 | 4 11 | eqeltrd | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> U e. ( UnifOn ` X ) ) |
| 13 | xmetutop | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( MetOpen ` D ) ) |
|
| 14 | 5 7 13 | syl2anc | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> ( unifTop ` ( metUnif ` D ) ) = ( MetOpen ` D ) ) |
| 15 | 4 | fveq2d | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> ( unifTop ` U ) = ( unifTop ` ( metUnif ` D ) ) ) |
| 16 | eqid | |- ( TopOpen ` F ) = ( TopOpen ` F ) |
|
| 17 | 16 1 2 | xmstopn | |- ( F e. *MetSp -> ( TopOpen ` F ) = ( MetOpen ` D ) ) |
| 18 | 17 | 3ad2ant2 | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> ( TopOpen ` F ) = ( MetOpen ` D ) ) |
| 19 | 14 15 18 | 3eqtr4rd | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> ( TopOpen ` F ) = ( unifTop ` U ) ) |
| 20 | 1 3 16 | isusp | |- ( F e. UnifSp <-> ( U e. ( UnifOn ` X ) /\ ( TopOpen ` F ) = ( unifTop ` U ) ) ) |
| 21 | 12 19 20 | sylanbrc | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) |