This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subsequence index I has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climsuselem1.1 | |- Z = ( ZZ>= ` M ) |
|
| climsuselem1.2 | |- ( ph -> M e. ZZ ) |
||
| climsuselem1.3 | |- ( ph -> ( I ` M ) e. Z ) |
||
| climsuselem1.4 | |- ( ( ph /\ k e. Z ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
||
| Assertion | climsuselem1 | |- ( ( ph /\ K e. Z ) -> ( I ` K ) e. ( ZZ>= ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climsuselem1.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climsuselem1.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climsuselem1.3 | |- ( ph -> ( I ` M ) e. Z ) |
|
| 4 | climsuselem1.4 | |- ( ( ph /\ k e. Z ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
|
| 5 | 1 | eleq2i | |- ( K e. Z <-> K e. ( ZZ>= ` M ) ) |
| 6 | 5 | biimpi | |- ( K e. Z -> K e. ( ZZ>= ` M ) ) |
| 7 | 6 | adantl | |- ( ( ph /\ K e. Z ) -> K e. ( ZZ>= ` M ) ) |
| 8 | simpl | |- ( ( ph /\ K e. Z ) -> ph ) |
|
| 9 | fveq2 | |- ( j = M -> ( I ` j ) = ( I ` M ) ) |
|
| 10 | fveq2 | |- ( j = M -> ( ZZ>= ` j ) = ( ZZ>= ` M ) ) |
|
| 11 | 9 10 | eleq12d | |- ( j = M -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` M ) e. ( ZZ>= ` M ) ) ) |
| 12 | 11 | imbi2d | |- ( j = M -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) ) ) |
| 13 | fveq2 | |- ( j = k -> ( I ` j ) = ( I ` k ) ) |
|
| 14 | fveq2 | |- ( j = k -> ( ZZ>= ` j ) = ( ZZ>= ` k ) ) |
|
| 15 | 13 14 | eleq12d | |- ( j = k -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` k ) e. ( ZZ>= ` k ) ) ) |
| 16 | 15 | imbi2d | |- ( j = k -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) ) |
| 17 | fveq2 | |- ( j = ( k + 1 ) -> ( I ` j ) = ( I ` ( k + 1 ) ) ) |
|
| 18 | fveq2 | |- ( j = ( k + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( k + 1 ) ) ) |
|
| 19 | 17 18 | eleq12d | |- ( j = ( k + 1 ) -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) |
| 20 | 19 | imbi2d | |- ( j = ( k + 1 ) -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) ) |
| 21 | fveq2 | |- ( j = K -> ( I ` j ) = ( I ` K ) ) |
|
| 22 | fveq2 | |- ( j = K -> ( ZZ>= ` j ) = ( ZZ>= ` K ) ) |
|
| 23 | 21 22 | eleq12d | |- ( j = K -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` K ) e. ( ZZ>= ` K ) ) ) |
| 24 | 23 | imbi2d | |- ( j = K -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` K ) e. ( ZZ>= ` K ) ) ) ) |
| 25 | 3 1 | eleqtrdi | |- ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) |
| 26 | 25 | a1i | |- ( M e. ZZ -> ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) ) |
| 27 | simpr | |- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ph ) |
|
| 28 | simpll | |- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> k e. ( ZZ>= ` M ) ) |
|
| 29 | simplr | |- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) |
|
| 30 | 27 29 | mpd | |- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( I ` k ) e. ( ZZ>= ` k ) ) |
| 31 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 32 | 31 | 3ad2ant2 | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k e. ZZ ) |
| 33 | 32 | peano2zd | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) e. ZZ ) |
| 34 | 33 | zred | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) e. RR ) |
| 35 | eluzelre | |- ( ( I ` k ) e. ( ZZ>= ` k ) -> ( I ` k ) e. RR ) |
|
| 36 | 35 | 3ad2ant3 | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` k ) e. RR ) |
| 37 | 1red | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> 1 e. RR ) |
|
| 38 | 36 37 | readdcld | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` k ) + 1 ) e. RR ) |
| 39 | 1 | eqimss2i | |- ( ZZ>= ` M ) C_ Z |
| 40 | 39 | a1i | |- ( ph -> ( ZZ>= ` M ) C_ Z ) |
| 41 | 40 | sseld | |- ( ph -> ( k e. ( ZZ>= ` M ) -> k e. Z ) ) |
| 42 | 41 | imdistani | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ph /\ k e. Z ) ) |
| 43 | 42 4 | syl | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
| 44 | 43 | 3adant3 | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
| 45 | eluzelz | |- ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) -> ( I ` ( k + 1 ) ) e. ZZ ) |
|
| 46 | 44 45 | syl | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ZZ ) |
| 47 | 46 | zred | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. RR ) |
| 48 | 32 | zred | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k e. RR ) |
| 49 | eluzle | |- ( ( I ` k ) e. ( ZZ>= ` k ) -> k <_ ( I ` k ) ) |
|
| 50 | 49 | 3ad2ant3 | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k <_ ( I ` k ) ) |
| 51 | 48 36 37 50 | leadd1dd | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) <_ ( ( I ` k ) + 1 ) ) |
| 52 | eluzle | |- ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) -> ( ( I ` k ) + 1 ) <_ ( I ` ( k + 1 ) ) ) |
|
| 53 | 44 52 | syl | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` k ) + 1 ) <_ ( I ` ( k + 1 ) ) ) |
| 54 | 34 38 47 51 53 | letrd | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) |
| 55 | eluz | |- ( ( ( k + 1 ) e. ZZ /\ ( I ` ( k + 1 ) ) e. ZZ ) -> ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) <-> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) ) |
|
| 56 | 33 46 55 | syl2anc | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) <-> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) ) |
| 57 | 54 56 | mpbird | |- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) |
| 58 | 27 28 30 57 | syl3anc | |- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) |
| 59 | 58 | exp31 | |- ( k e. ( ZZ>= ` M ) -> ( ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ph -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) ) |
| 60 | 12 16 20 24 26 59 | uzind4 | |- ( K e. ( ZZ>= ` M ) -> ( ph -> ( I ` K ) e. ( ZZ>= ` K ) ) ) |
| 61 | 7 8 60 | sylc | |- ( ( ph /\ K e. Z ) -> ( I ` K ) e. ( ZZ>= ` K ) ) |