This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumneg.1 | |- Z = ( ZZ>= ` M ) |
|
| isumneg.2 | |- ( ph -> M e. ZZ ) |
||
| isumneg.3 | |- ( ph -> sum_ k e. Z A e. CC ) |
||
| isumneg.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumneg.5 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isumneg.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | isumneg | |- ( ph -> sum_ k e. Z -u A = -u sum_ k e. Z A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumneg.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumneg.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumneg.3 | |- ( ph -> sum_ k e. Z A e. CC ) |
|
| 4 | isumneg.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 5 | isumneg.5 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 6 | isumneg.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 7 | 5 | mulm1d | |- ( ( ph /\ k e. Z ) -> ( -u 1 x. A ) = -u A ) |
| 8 | 7 | eqcomd | |- ( ( ph /\ k e. Z ) -> -u A = ( -u 1 x. A ) ) |
| 9 | 8 | sumeq2dv | |- ( ph -> sum_ k e. Z -u A = sum_ k e. Z ( -u 1 x. A ) ) |
| 10 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 11 | 10 | negcld | |- ( ph -> -u 1 e. CC ) |
| 12 | 1 2 4 5 6 11 | isummulc2 | |- ( ph -> ( -u 1 x. sum_ k e. Z A ) = sum_ k e. Z ( -u 1 x. A ) ) |
| 13 | 3 | mulm1d | |- ( ph -> ( -u 1 x. sum_ k e. Z A ) = -u sum_ k e. Z A ) |
| 14 | 9 12 13 | 3eqtr2d | |- ( ph -> sum_ k e. Z -u A = -u sum_ k e. Z A ) |