This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class abstraction restricted to a Cartesian product as an ordered-pair class abstraction. (Contributed by NM, 20-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabxp.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
| Assertion | rabxp | |- { x e. ( A X. B ) | ph } = { <. y , z >. | ( y e. A /\ z e. B /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabxp.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
| 2 | elxp | |- ( x e. ( A X. B ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
|
| 3 | 2 | anbi1i | |- ( ( x e. ( A X. B ) /\ ph ) <-> ( E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) /\ ph ) ) |
| 4 | 19.41vv | |- ( E. y E. z ( ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) /\ ph ) <-> ( E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) /\ ph ) ) |
|
| 5 | anass | |- ( ( ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) /\ ph ) <-> ( x = <. y , z >. /\ ( ( y e. A /\ z e. B ) /\ ph ) ) ) |
|
| 6 | 1 | anbi2d | |- ( x = <. y , z >. -> ( ( ( y e. A /\ z e. B ) /\ ph ) <-> ( ( y e. A /\ z e. B ) /\ ps ) ) ) |
| 7 | df-3an | |- ( ( y e. A /\ z e. B /\ ps ) <-> ( ( y e. A /\ z e. B ) /\ ps ) ) |
|
| 8 | 6 7 | bitr4di | |- ( x = <. y , z >. -> ( ( ( y e. A /\ z e. B ) /\ ph ) <-> ( y e. A /\ z e. B /\ ps ) ) ) |
| 9 | 8 | pm5.32i | |- ( ( x = <. y , z >. /\ ( ( y e. A /\ z e. B ) /\ ph ) ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B /\ ps ) ) ) |
| 10 | 5 9 | bitri | |- ( ( ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) /\ ph ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B /\ ps ) ) ) |
| 11 | 10 | 2exbii | |- ( E. y E. z ( ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) /\ ph ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B /\ ps ) ) ) |
| 12 | 3 4 11 | 3bitr2i | |- ( ( x e. ( A X. B ) /\ ph ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B /\ ps ) ) ) |
| 13 | 12 | abbii | |- { x | ( x e. ( A X. B ) /\ ph ) } = { x | E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B /\ ps ) ) } |
| 14 | df-rab | |- { x e. ( A X. B ) | ph } = { x | ( x e. ( A X. B ) /\ ph ) } |
|
| 15 | df-opab | |- { <. y , z >. | ( y e. A /\ z e. B /\ ps ) } = { x | E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B /\ ps ) ) } |
|
| 16 | 13 14 15 | 3eqtr4i | |- { x e. ( A X. B ) | ph } = { <. y , z >. | ( y e. A /\ z e. B /\ ps ) } |