This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 22-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppvalfn | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun | |- ( F Fn X -> Fun F ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> Fun F ) |
| 3 | fnex | |- ( ( F Fn X /\ X e. V ) -> F e. _V ) |
|
| 4 | 3 | 3adant3 | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> F e. _V ) |
| 5 | simp3 | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> Z e. W ) |
|
| 6 | suppval1 | |- ( ( Fun F /\ F e. _V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
|
| 7 | 2 4 5 6 | syl3anc | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
| 8 | fndm | |- ( F Fn X -> dom F = X ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> dom F = X ) |
| 10 | 9 | rabeqdv | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> { i e. dom F | ( F ` i ) =/= Z } = { i e. X | ( F ` i ) =/= Z } ) |
| 11 | 7 10 | eqtrd | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |