This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocin | |- ( A e. SH -> ( A i^i ( _|_ ` A ) ) = 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shocel | |- ( A e. SH -> ( x e. ( _|_ ` A ) <-> ( x e. ~H /\ A. y e. A ( x .ih y ) = 0 ) ) ) |
|
| 2 | oveq2 | |- ( y = x -> ( x .ih y ) = ( x .ih x ) ) |
|
| 3 | 2 | eqeq1d | |- ( y = x -> ( ( x .ih y ) = 0 <-> ( x .ih x ) = 0 ) ) |
| 4 | 3 | rspccv | |- ( A. y e. A ( x .ih y ) = 0 -> ( x e. A -> ( x .ih x ) = 0 ) ) |
| 5 | his6 | |- ( x e. ~H -> ( ( x .ih x ) = 0 <-> x = 0h ) ) |
|
| 6 | 5 | biimpd | |- ( x e. ~H -> ( ( x .ih x ) = 0 -> x = 0h ) ) |
| 7 | 4 6 | sylan9r | |- ( ( x e. ~H /\ A. y e. A ( x .ih y ) = 0 ) -> ( x e. A -> x = 0h ) ) |
| 8 | 1 7 | biimtrdi | |- ( A e. SH -> ( x e. ( _|_ ` A ) -> ( x e. A -> x = 0h ) ) ) |
| 9 | 8 | com23 | |- ( A e. SH -> ( x e. A -> ( x e. ( _|_ ` A ) -> x = 0h ) ) ) |
| 10 | 9 | impd | |- ( A e. SH -> ( ( x e. A /\ x e. ( _|_ ` A ) ) -> x = 0h ) ) |
| 11 | sh0 | |- ( A e. SH -> 0h e. A ) |
|
| 12 | oc0 | |- ( A e. SH -> 0h e. ( _|_ ` A ) ) |
|
| 13 | 11 12 | jca | |- ( A e. SH -> ( 0h e. A /\ 0h e. ( _|_ ` A ) ) ) |
| 14 | eleq1 | |- ( x = 0h -> ( x e. A <-> 0h e. A ) ) |
|
| 15 | eleq1 | |- ( x = 0h -> ( x e. ( _|_ ` A ) <-> 0h e. ( _|_ ` A ) ) ) |
|
| 16 | 14 15 | anbi12d | |- ( x = 0h -> ( ( x e. A /\ x e. ( _|_ ` A ) ) <-> ( 0h e. A /\ 0h e. ( _|_ ` A ) ) ) ) |
| 17 | 13 16 | syl5ibrcom | |- ( A e. SH -> ( x = 0h -> ( x e. A /\ x e. ( _|_ ` A ) ) ) ) |
| 18 | 10 17 | impbid | |- ( A e. SH -> ( ( x e. A /\ x e. ( _|_ ` A ) ) <-> x = 0h ) ) |
| 19 | elin | |- ( x e. ( A i^i ( _|_ ` A ) ) <-> ( x e. A /\ x e. ( _|_ ` A ) ) ) |
|
| 20 | elch0 | |- ( x e. 0H <-> x = 0h ) |
|
| 21 | 18 19 20 | 3bitr4g | |- ( A e. SH -> ( x e. ( A i^i ( _|_ ` A ) ) <-> x e. 0H ) ) |
| 22 | 21 | eqrdv | |- ( A e. SH -> ( A i^i ( _|_ ` A ) ) = 0H ) |