This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrnghmmul.m | |- M = ( mulGrp ` R ) |
|
| isrnghmmul.n | |- N = ( mulGrp ` S ) |
||
| Assertion | isrnghmmul | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnghmmul.m | |- M = ( mulGrp ` R ) |
|
| 2 | isrnghmmul.n | |- N = ( mulGrp ` S ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 6 | 3 4 5 | isrnghm | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
| 7 | 1 | rngmgp | |- ( R e. Rng -> M e. Smgrp ) |
| 8 | sgrpmgm | |- ( M e. Smgrp -> M e. Mgm ) |
|
| 9 | 7 8 | syl | |- ( R e. Rng -> M e. Mgm ) |
| 10 | 2 | rngmgp | |- ( S e. Rng -> N e. Smgrp ) |
| 11 | sgrpmgm | |- ( N e. Smgrp -> N e. Mgm ) |
|
| 12 | 10 11 | syl | |- ( S e. Rng -> N e. Mgm ) |
| 13 | 9 12 | anim12i | |- ( ( R e. Rng /\ S e. Rng ) -> ( M e. Mgm /\ N e. Mgm ) ) |
| 14 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 15 | 3 14 | ghmf | |- ( F e. ( R GrpHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 16 | 13 15 | anim12i | |- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) ) |
| 17 | 16 | biantrurd | |- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> ( ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
| 18 | anass | |- ( ( ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
|
| 19 | 17 18 | bitrdi | |- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) ) |
| 20 | 1 3 | mgpbas | |- ( Base ` R ) = ( Base ` M ) |
| 21 | 2 14 | mgpbas | |- ( Base ` S ) = ( Base ` N ) |
| 22 | 1 4 | mgpplusg | |- ( .r ` R ) = ( +g ` M ) |
| 23 | 2 5 | mgpplusg | |- ( .r ` S ) = ( +g ` N ) |
| 24 | 20 21 22 23 | ismgmhm | |- ( F e. ( M MgmHom N ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
| 25 | 19 24 | bitr4di | |- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> F e. ( M MgmHom N ) ) ) |
| 26 | 25 | pm5.32da | |- ( ( R e. Rng /\ S e. Rng ) -> ( ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |
| 27 | 26 | pm5.32i | |- ( ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |
| 28 | 6 27 | bitri | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |