This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | |- B = ( Base ` R ) |
|
| 0ring.0 | |- .0. = ( 0g ` R ) |
||
| 0ring01eq.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | 0ring1eq0 | |- ( R e. ( Ring \ NzRing ) -> .1. = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | |- B = ( Base ` R ) |
|
| 2 | 0ring.0 | |- .0. = ( 0g ` R ) |
|
| 3 | 0ring01eq.1 | |- .1. = ( 1r ` R ) |
|
| 4 | eldif | |- ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ -. R e. NzRing ) ) |
|
| 5 | 0ringnnzr | |- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
|
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | 6 2 3 | 0ring01eq | |- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> .0. = .1. ) |
| 8 | 7 | eqcomd | |- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> .1. = .0. ) |
| 9 | 8 | ex | |- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 -> .1. = .0. ) ) |
| 10 | 5 9 | sylbird | |- ( R e. Ring -> ( -. R e. NzRing -> .1. = .0. ) ) |
| 11 | 10 | imp | |- ( ( R e. Ring /\ -. R e. NzRing ) -> .1. = .0. ) |
| 12 | 4 11 | sylbi | |- ( R e. ( Ring \ NzRing ) -> .1. = .0. ) |