This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0mhm.b | |- B = ( Base ` S ) |
|
| c0mhm.0 | |- .0. = ( 0g ` T ) |
||
| c0mhm.h | |- H = ( x e. B |-> .0. ) |
||
| Assertion | c0ghm | |- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0mhm.b | |- B = ( Base ` S ) |
|
| 2 | c0mhm.0 | |- .0. = ( 0g ` T ) |
|
| 3 | c0mhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | grpmnd | |- ( S e. Grp -> S e. Mnd ) |
|
| 5 | grpmnd | |- ( T e. Grp -> T e. Mnd ) |
|
| 6 | 4 5 | anim12i | |- ( ( S e. Grp /\ T e. Grp ) -> ( S e. Mnd /\ T e. Mnd ) ) |
| 7 | 1 2 3 | c0mhm | |- ( ( S e. Mnd /\ T e. Mnd ) -> H e. ( S MndHom T ) ) |
| 8 | 6 7 | syl | |- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S MndHom T ) ) |
| 9 | ghmmhmb | |- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
|
| 10 | 9 | eleq2d | |- ( ( S e. Grp /\ T e. Grp ) -> ( H e. ( S GrpHom T ) <-> H e. ( S MndHom T ) ) ) |
| 11 | 8 10 | mpbird | |- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) |