This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0mhm.b | |- B = ( Base ` S ) |
|
| c0mhm.0 | |- .0. = ( 0g ` T ) |
||
| c0mhm.h | |- H = ( x e. B |-> .0. ) |
||
| Assertion | c0mgm | |- ( ( S e. Mgm /\ T e. Mnd ) -> H e. ( S MgmHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0mhm.b | |- B = ( Base ` S ) |
|
| 2 | c0mhm.0 | |- .0. = ( 0g ` T ) |
|
| 3 | c0mhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | mndmgm | |- ( T e. Mnd -> T e. Mgm ) |
|
| 5 | 4 | anim2i | |- ( ( S e. Mgm /\ T e. Mnd ) -> ( S e. Mgm /\ T e. Mgm ) ) |
| 6 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 7 | 6 2 | mndidcl | |- ( T e. Mnd -> .0. e. ( Base ` T ) ) |
| 8 | 7 | adantl | |- ( ( S e. Mgm /\ T e. Mnd ) -> .0. e. ( Base ` T ) ) |
| 9 | 8 | adantr | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ x e. B ) -> .0. e. ( Base ` T ) ) |
| 10 | 9 3 | fmptd | |- ( ( S e. Mgm /\ T e. Mnd ) -> H : B --> ( Base ` T ) ) |
| 11 | 7 | ancli | |- ( T e. Mnd -> ( T e. Mnd /\ .0. e. ( Base ` T ) ) ) |
| 12 | 11 | adantl | |- ( ( S e. Mgm /\ T e. Mnd ) -> ( T e. Mnd /\ .0. e. ( Base ` T ) ) ) |
| 13 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 14 | 6 13 2 | mndlid | |- ( ( T e. Mnd /\ .0. e. ( Base ` T ) ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 15 | 12 14 | syl | |- ( ( S e. Mgm /\ T e. Mnd ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 16 | 15 | adantr | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 17 | 3 | a1i | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> H = ( x e. B |-> .0. ) ) |
| 18 | eqidd | |- ( ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = a ) -> .0. = .0. ) |
|
| 19 | simprl | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
|
| 20 | 8 | adantr | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> .0. e. ( Base ` T ) ) |
| 21 | 17 18 19 20 | fvmptd | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` a ) = .0. ) |
| 22 | eqidd | |- ( ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = b ) -> .0. = .0. ) |
|
| 23 | simprr | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
|
| 24 | 17 22 23 20 | fvmptd | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` b ) = .0. ) |
| 25 | 21 24 | oveq12d | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( ( H ` a ) ( +g ` T ) ( H ` b ) ) = ( .0. ( +g ` T ) .0. ) ) |
| 26 | eqidd | |- ( ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = ( a ( +g ` S ) b ) ) -> .0. = .0. ) |
|
| 27 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 28 | 1 27 | mgmcl | |- ( ( S e. Mgm /\ a e. B /\ b e. B ) -> ( a ( +g ` S ) b ) e. B ) |
| 29 | 28 | 3expb | |- ( ( S e. Mgm /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` S ) b ) e. B ) |
| 30 | 29 | adantlr | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` S ) b ) e. B ) |
| 31 | 17 26 30 20 | fvmptd | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` ( a ( +g ` S ) b ) ) = .0. ) |
| 32 | 16 25 31 | 3eqtr4rd | |- ( ( ( S e. Mgm /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) |
| 33 | 32 | ralrimivva | |- ( ( S e. Mgm /\ T e. Mnd ) -> A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) |
| 34 | 10 33 | jca | |- ( ( S e. Mgm /\ T e. Mnd ) -> ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) ) |
| 35 | 1 6 27 13 | ismgmhm | |- ( H e. ( S MgmHom T ) <-> ( ( S e. Mgm /\ T e. Mgm ) /\ ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) ) ) |
| 36 | 5 34 35 | sylanbrc | |- ( ( S e. Mgm /\ T e. Mnd ) -> H e. ( S MgmHom T ) ) |