This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c0mhm.b | |- B = ( Base ` S ) |
|
| c0mhm.0 | |- .0. = ( 0g ` T ) |
||
| c0mhm.h | |- H = ( x e. B |-> .0. ) |
||
| Assertion | c0mhm | |- ( ( S e. Mnd /\ T e. Mnd ) -> H e. ( S MndHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0mhm.b | |- B = ( Base ` S ) |
|
| 2 | c0mhm.0 | |- .0. = ( 0g ` T ) |
|
| 3 | c0mhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 5 | 4 2 | mndidcl | |- ( T e. Mnd -> .0. e. ( Base ` T ) ) |
| 6 | 5 | adantl | |- ( ( S e. Mnd /\ T e. Mnd ) -> .0. e. ( Base ` T ) ) |
| 7 | 6 | adantr | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ x e. B ) -> .0. e. ( Base ` T ) ) |
| 8 | 7 3 | fmptd | |- ( ( S e. Mnd /\ T e. Mnd ) -> H : B --> ( Base ` T ) ) |
| 9 | 5 | ancli | |- ( T e. Mnd -> ( T e. Mnd /\ .0. e. ( Base ` T ) ) ) |
| 10 | 9 | adantl | |- ( ( S e. Mnd /\ T e. Mnd ) -> ( T e. Mnd /\ .0. e. ( Base ` T ) ) ) |
| 11 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 12 | 4 11 2 | mndlid | |- ( ( T e. Mnd /\ .0. e. ( Base ` T ) ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 13 | 10 12 | syl | |- ( ( S e. Mnd /\ T e. Mnd ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 14 | 13 | adantr | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 15 | 3 | a1i | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> H = ( x e. B |-> .0. ) ) |
| 16 | eqidd | |- ( ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = a ) -> .0. = .0. ) |
|
| 17 | simprl | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
|
| 18 | 6 | adantr | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> .0. e. ( Base ` T ) ) |
| 19 | 15 16 17 18 | fvmptd | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` a ) = .0. ) |
| 20 | eqidd | |- ( ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = b ) -> .0. = .0. ) |
|
| 21 | simprr | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
|
| 22 | 15 20 21 18 | fvmptd | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` b ) = .0. ) |
| 23 | 19 22 | oveq12d | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( ( H ` a ) ( +g ` T ) ( H ` b ) ) = ( .0. ( +g ` T ) .0. ) ) |
| 24 | eqidd | |- ( ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = ( a ( +g ` S ) b ) ) -> .0. = .0. ) |
|
| 25 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 26 | 1 25 | mndcl | |- ( ( S e. Mnd /\ a e. B /\ b e. B ) -> ( a ( +g ` S ) b ) e. B ) |
| 27 | 26 | 3expb | |- ( ( S e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` S ) b ) e. B ) |
| 28 | 27 | adantlr | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` S ) b ) e. B ) |
| 29 | 15 24 28 18 | fvmptd | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` ( a ( +g ` S ) b ) ) = .0. ) |
| 30 | 14 23 29 | 3eqtr4rd | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) |
| 31 | 30 | ralrimivva | |- ( ( S e. Mnd /\ T e. Mnd ) -> A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) |
| 32 | 3 | a1i | |- ( ( S e. Mnd /\ T e. Mnd ) -> H = ( x e. B |-> .0. ) ) |
| 33 | eqidd | |- ( ( ( S e. Mnd /\ T e. Mnd ) /\ x = ( 0g ` S ) ) -> .0. = .0. ) |
|
| 34 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 35 | 1 34 | mndidcl | |- ( S e. Mnd -> ( 0g ` S ) e. B ) |
| 36 | 35 | adantr | |- ( ( S e. Mnd /\ T e. Mnd ) -> ( 0g ` S ) e. B ) |
| 37 | 32 33 36 6 | fvmptd | |- ( ( S e. Mnd /\ T e. Mnd ) -> ( H ` ( 0g ` S ) ) = .0. ) |
| 38 | 8 31 37 | 3jca | |- ( ( S e. Mnd /\ T e. Mnd ) -> ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) /\ ( H ` ( 0g ` S ) ) = .0. ) ) |
| 39 | 38 | ancli | |- ( ( S e. Mnd /\ T e. Mnd ) -> ( ( S e. Mnd /\ T e. Mnd ) /\ ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) /\ ( H ` ( 0g ` S ) ) = .0. ) ) ) |
| 40 | 1 4 25 11 34 2 | ismhm | |- ( H e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) /\ ( H ` ( 0g ` S ) ) = .0. ) ) ) |
| 41 | 39 40 | sylibr | |- ( ( S e. Mnd /\ T e. Mnd ) -> H e. ( S MndHom T ) ) |