This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partial converse to bezout . Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bezoutr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || ( ( A x. X ) + ( B x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 2 | 1 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 3 | 2 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) e. ZZ ) |
| 4 | simpll | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> A e. ZZ ) |
|
| 5 | simprl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> X e. ZZ ) |
|
| 6 | 4 5 | zmulcld | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A x. X ) e. ZZ ) |
| 7 | simplr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> B e. ZZ ) |
|
| 8 | simprr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> Y e. ZZ ) |
|
| 9 | 7 8 | zmulcld | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( B x. Y ) e. ZZ ) |
| 10 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 11 | 10 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 12 | 11 | simpld | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || A ) |
| 13 | 3 4 5 12 | dvdsmultr1d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || ( A x. X ) ) |
| 14 | 11 | simprd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || B ) |
| 15 | 3 7 8 14 | dvdsmultr1d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || ( B x. Y ) ) |
| 16 | 3 6 9 13 15 | dvds2addd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( A gcd B ) || ( ( A x. X ) + ( B x. Y ) ) ) |