This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axcc2 | |- E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | |- F/_ n if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) |
|
| 2 | nfcv | |- F/_ m if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) |
|
| 3 | fveqeq2 | |- ( m = n -> ( ( F ` m ) = (/) <-> ( F ` n ) = (/) ) ) |
|
| 4 | fveq2 | |- ( m = n -> ( F ` m ) = ( F ` n ) ) |
|
| 5 | 3 4 | ifbieq2d | |- ( m = n -> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) = if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
| 6 | 1 2 5 | cbvmpt | |- ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) = ( n e. _om |-> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
| 7 | nfcv | |- F/_ n ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) |
|
| 8 | nfcv | |- F/_ m { n } |
|
| 9 | nffvmpt1 | |- F/_ m ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) |
|
| 10 | 8 9 | nfxp | |- F/_ m ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) |
| 11 | sneq | |- ( m = n -> { m } = { n } ) |
|
| 12 | fveq2 | |- ( m = n -> ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) = ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) |
|
| 13 | 11 12 | xpeq12d | |- ( m = n -> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) = ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) ) |
| 14 | 7 10 13 | cbvmpt | |- ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) = ( n e. _om |-> ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) ) |
| 15 | nfcv | |- F/_ n ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) |
|
| 16 | nfcv | |- F/_ m 2nd |
|
| 17 | nfcv | |- F/_ m f |
|
| 18 | nffvmpt1 | |- F/_ m ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) |
|
| 19 | 17 18 | nffv | |- F/_ m ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) |
| 20 | 16 19 | nffv | |- F/_ m ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) |
| 21 | 2fveq3 | |- ( m = n -> ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) = ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) |
|
| 22 | 21 | fveq2d | |- ( m = n -> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) = ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) ) |
| 23 | 15 20 22 | cbvmpt | |- ( m e. _om |-> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) ) = ( n e. _om |-> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) ) |
| 24 | 6 14 23 | axcc2lem | |- E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) |