This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod2iN that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | |- B = ( Base ` K ) |
|
| atmod.l | |- .<_ = ( le ` K ) |
||
| atmod.j | |- .\/ = ( join ` K ) |
||
| atmod.m | |- ./\ = ( meet ` K ) |
||
| atmod.a | |- A = ( Atoms ` K ) |
||
| Assertion | atmod2i2 | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( ( X ./\ P ) .\/ Y ) = ( X ./\ ( P .\/ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | |- B = ( Base ` K ) |
|
| 2 | atmod.l | |- .<_ = ( le ` K ) |
|
| 3 | atmod.j | |- .\/ = ( join ` K ) |
|
| 4 | atmod.m | |- ./\ = ( meet ` K ) |
|
| 5 | atmod.a | |- A = ( Atoms ` K ) |
|
| 6 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> K e. Lat ) |
| 8 | simp21 | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> P e. A ) |
|
| 9 | 1 5 | atbase | |- ( P e. A -> P e. B ) |
| 10 | 8 9 | syl | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> P e. B ) |
| 11 | simp23 | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> Y e. B ) |
|
| 12 | 1 3 | latjcom | |- ( ( K e. Lat /\ P e. B /\ Y e. B ) -> ( P .\/ Y ) = ( Y .\/ P ) ) |
| 13 | 7 10 11 12 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( P .\/ Y ) = ( Y .\/ P ) ) |
| 14 | 13 | oveq1d | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( ( P .\/ Y ) ./\ X ) = ( ( Y .\/ P ) ./\ X ) ) |
| 15 | simp22 | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> X e. B ) |
|
| 16 | 1 3 | latjcl | |- ( ( K e. Lat /\ P e. B /\ Y e. B ) -> ( P .\/ Y ) e. B ) |
| 17 | 7 10 11 16 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( P .\/ Y ) e. B ) |
| 18 | 1 4 | latmcom | |- ( ( K e. Lat /\ X e. B /\ ( P .\/ Y ) e. B ) -> ( X ./\ ( P .\/ Y ) ) = ( ( P .\/ Y ) ./\ X ) ) |
| 19 | 7 15 17 18 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( X ./\ ( P .\/ Y ) ) = ( ( P .\/ Y ) ./\ X ) ) |
| 20 | simp1 | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> K e. HL ) |
|
| 21 | simp3 | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> Y .<_ X ) |
|
| 22 | 1 2 3 4 5 | atmod1i2 | |- ( ( K e. HL /\ ( P e. A /\ Y e. B /\ X e. B ) /\ Y .<_ X ) -> ( Y .\/ ( P ./\ X ) ) = ( ( Y .\/ P ) ./\ X ) ) |
| 23 | 20 8 11 15 21 22 | syl131anc | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( Y .\/ ( P ./\ X ) ) = ( ( Y .\/ P ) ./\ X ) ) |
| 24 | 14 19 23 | 3eqtr4d | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( X ./\ ( P .\/ Y ) ) = ( Y .\/ ( P ./\ X ) ) ) |
| 25 | 1 4 | latmcl | |- ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P ./\ X ) e. B ) |
| 26 | 7 10 15 25 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( P ./\ X ) e. B ) |
| 27 | 1 3 | latjcom | |- ( ( K e. Lat /\ Y e. B /\ ( P ./\ X ) e. B ) -> ( Y .\/ ( P ./\ X ) ) = ( ( P ./\ X ) .\/ Y ) ) |
| 28 | 7 11 26 27 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( Y .\/ ( P ./\ X ) ) = ( ( P ./\ X ) .\/ Y ) ) |
| 29 | 1 4 | latmcom | |- ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P ./\ X ) = ( X ./\ P ) ) |
| 30 | 7 10 15 29 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( P ./\ X ) = ( X ./\ P ) ) |
| 31 | 30 | oveq1d | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( ( P ./\ X ) .\/ Y ) = ( ( X ./\ P ) .\/ Y ) ) |
| 32 | 24 28 31 | 3eqtrrd | |- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ Y .<_ X ) -> ( ( X ./\ P ) .\/ Y ) = ( X ./\ ( P .\/ Y ) ) ) |