This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | |- B = ( Base ` K ) |
|
| atmod.l | |- .<_ = ( le ` K ) |
||
| atmod.j | |- .\/ = ( join ` K ) |
||
| atmod.m | |- ./\ = ( meet ` K ) |
||
| atmod.a | |- A = ( Atoms ` K ) |
||
| Assertion | llnmod2i2 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( ( X ./\ ( P .\/ Q ) ) .\/ Y ) = ( X ./\ ( ( P .\/ Q ) .\/ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | |- B = ( Base ` K ) |
|
| 2 | atmod.l | |- .<_ = ( le ` K ) |
|
| 3 | atmod.j | |- .\/ = ( join ` K ) |
|
| 4 | atmod.m | |- ./\ = ( meet ` K ) |
|
| 5 | atmod.a | |- A = ( Atoms ` K ) |
|
| 6 | simp11 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> K e. HL ) |
|
| 7 | 6 | hllatd | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> K e. Lat ) |
| 8 | simp13 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> Y e. B ) |
|
| 9 | simp2l | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> P e. A ) |
|
| 10 | simp2r | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> Q e. A ) |
|
| 11 | 1 3 5 | hlatjcl | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B ) |
| 12 | 6 9 10 11 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( P .\/ Q ) e. B ) |
| 13 | simp12 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> X e. B ) |
|
| 14 | 1 4 | latmcl | |- ( ( K e. Lat /\ ( P .\/ Q ) e. B /\ X e. B ) -> ( ( P .\/ Q ) ./\ X ) e. B ) |
| 15 | 7 12 13 14 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( ( P .\/ Q ) ./\ X ) e. B ) |
| 16 | 1 3 | latjcom | |- ( ( K e. Lat /\ Y e. B /\ ( ( P .\/ Q ) ./\ X ) e. B ) -> ( Y .\/ ( ( P .\/ Q ) ./\ X ) ) = ( ( ( P .\/ Q ) ./\ X ) .\/ Y ) ) |
| 17 | 7 8 15 16 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( Y .\/ ( ( P .\/ Q ) ./\ X ) ) = ( ( ( P .\/ Q ) ./\ X ) .\/ Y ) ) |
| 18 | 1 3 | latjcl | |- ( ( K e. Lat /\ Y e. B /\ ( P .\/ Q ) e. B ) -> ( Y .\/ ( P .\/ Q ) ) e. B ) |
| 19 | 7 8 12 18 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( Y .\/ ( P .\/ Q ) ) e. B ) |
| 20 | 1 4 | latmcom | |- ( ( K e. Lat /\ X e. B /\ ( Y .\/ ( P .\/ Q ) ) e. B ) -> ( X ./\ ( Y .\/ ( P .\/ Q ) ) ) = ( ( Y .\/ ( P .\/ Q ) ) ./\ X ) ) |
| 21 | 7 13 19 20 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( X ./\ ( Y .\/ ( P .\/ Q ) ) ) = ( ( Y .\/ ( P .\/ Q ) ) ./\ X ) ) |
| 22 | 1 3 | latjcom | |- ( ( K e. Lat /\ ( P .\/ Q ) e. B /\ Y e. B ) -> ( ( P .\/ Q ) .\/ Y ) = ( Y .\/ ( P .\/ Q ) ) ) |
| 23 | 7 12 8 22 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( ( P .\/ Q ) .\/ Y ) = ( Y .\/ ( P .\/ Q ) ) ) |
| 24 | 23 | oveq2d | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( X ./\ ( ( P .\/ Q ) .\/ Y ) ) = ( X ./\ ( Y .\/ ( P .\/ Q ) ) ) ) |
| 25 | simp3 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> Y .<_ X ) |
|
| 26 | 1 2 3 4 5 | llnmod1i2 | |- ( ( ( K e. HL /\ Y e. B /\ X e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( Y .\/ ( ( P .\/ Q ) ./\ X ) ) = ( ( Y .\/ ( P .\/ Q ) ) ./\ X ) ) |
| 27 | 6 8 13 9 10 25 26 | syl321anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( Y .\/ ( ( P .\/ Q ) ./\ X ) ) = ( ( Y .\/ ( P .\/ Q ) ) ./\ X ) ) |
| 28 | 21 24 27 | 3eqtr4d | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( X ./\ ( ( P .\/ Q ) .\/ Y ) ) = ( Y .\/ ( ( P .\/ Q ) ./\ X ) ) ) |
| 29 | 1 4 | latmcom | |- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ X ) ) |
| 30 | 7 13 12 29 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( X ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ X ) ) |
| 31 | 30 | oveq1d | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( ( X ./\ ( P .\/ Q ) ) .\/ Y ) = ( ( ( P .\/ Q ) ./\ X ) .\/ Y ) ) |
| 32 | 17 28 31 | 3eqtr4rd | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ Y .<_ X ) -> ( ( X ./\ ( P .\/ Q ) ) .\/ Y ) = ( X ./\ ( ( P .\/ Q ) .\/ Y ) ) ) |