This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efiatan | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( sqrt ` ( 1 + ( _i x. A ) ) ) / ( sqrt ` ( 1 - ( _i x. A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atanval | |- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) = ( _i x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | 3 | a1i | |- ( A e. dom arctan -> _i e. CC ) |
| 5 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 6 | 3 5 | mp1i | |- ( A e. dom arctan -> ( _i / 2 ) e. CC ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 9 | 8 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 10 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 11 | 3 9 10 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 12 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 13 | 7 11 12 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 14 | 8 | simp2bi | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 15 | 13 14 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 16 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 17 | 7 11 16 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 18 | 8 | simp3bi | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 19 | 17 18 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 20 | 15 19 | subcld | |- ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 21 | 4 6 20 | mulassd | |- ( A e. dom arctan -> ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( _i x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 22 | 2cn | |- 2 e. CC |
|
| 23 | 2ne0 | |- 2 =/= 0 |
|
| 24 | divneg | |- ( ( 1 e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( 1 / 2 ) = ( -u 1 / 2 ) ) |
|
| 25 | 7 22 23 24 | mp3an | |- -u ( 1 / 2 ) = ( -u 1 / 2 ) |
| 26 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 27 | 26 | oveq1i | |- ( ( _i x. _i ) / 2 ) = ( -u 1 / 2 ) |
| 28 | 3 3 22 23 | divassi | |- ( ( _i x. _i ) / 2 ) = ( _i x. ( _i / 2 ) ) |
| 29 | 25 27 28 | 3eqtr2i | |- -u ( 1 / 2 ) = ( _i x. ( _i / 2 ) ) |
| 30 | 29 | oveq1i | |- ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 31 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 32 | mulneg12 | |- ( ( ( 1 / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
|
| 33 | 31 20 32 | sylancr | |- ( A e. dom arctan -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 34 | 15 19 | negsubdi2d | |- ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 35 | 34 | oveq2d | |- ( A e. dom arctan -> ( ( 1 / 2 ) x. -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 36 | 31 | a1i | |- ( A e. dom arctan -> ( 1 / 2 ) e. CC ) |
| 37 | 36 19 15 | subdid | |- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 38 | 33 35 37 | 3eqtrd | |- ( A e. dom arctan -> ( -u ( 1 / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 39 | 30 38 | eqtr3id | |- ( A e. dom arctan -> ( ( _i x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 40 | 2 21 39 | 3eqtr2d | |- ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) = ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 41 | 40 | fveq2d | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 42 | mulcl | |- ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
|
| 43 | 31 19 42 | sylancr | |- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 44 | mulcl | |- ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
|
| 45 | 31 15 44 | sylancr | |- ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 46 | efsub | |- ( ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) -> ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
|
| 47 | 43 45 46 | syl2anc | |- ( A e. dom arctan -> ( exp ` ( ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 48 | 17 18 36 | cxpefd | |- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 49 | cxpsqrt | |- ( ( 1 + ( _i x. A ) ) e. CC -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) |
|
| 50 | 17 49 | syl | |- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) |
| 51 | 48 50 | eqtr3d | |- ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( sqrt ` ( 1 + ( _i x. A ) ) ) ) |
| 52 | 13 14 36 | cxpefd | |- ( A e. dom arctan -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 53 | cxpsqrt | |- ( ( 1 - ( _i x. A ) ) e. CC -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) |
|
| 54 | 13 53 | syl | |- ( A e. dom arctan -> ( ( 1 - ( _i x. A ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) |
| 55 | 52 54 | eqtr3d | |- ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( sqrt ` ( 1 - ( _i x. A ) ) ) ) |
| 56 | 51 55 | oveq12d | |- ( A e. dom arctan -> ( ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( _i x. A ) ) ) ) ) / ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( sqrt ` ( 1 + ( _i x. A ) ) ) / ( sqrt ` ( 1 - ( _i x. A ) ) ) ) ) |
| 57 | 41 47 56 | 3eqtrd | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( sqrt ` ( 1 + ( _i x. A ) ) ) / ( sqrt ` ( 1 - ( _i x. A ) ) ) ) ) |