This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tancl | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 2 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 3 | 2 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) |
| 4 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 5 | 4 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. CC ) |
| 6 | simpr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
|
| 7 | 3 5 6 | divcld | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) e. CC ) |
| 8 | 1 7 | eqeltrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) |