This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assapropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| assapropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| assapropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| assapropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| assapropd.5 | |- ( ph -> F = ( Scalar ` K ) ) |
||
| assapropd.6 | |- ( ph -> F = ( Scalar ` L ) ) |
||
| assapropd.7 | |- P = ( Base ` F ) |
||
| assapropd.8 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
||
| Assertion | assapropd | |- ( ph -> ( K e. AssAlg <-> L e. AssAlg ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assapropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | assapropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | assapropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | assapropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | assapropd.5 | |- ( ph -> F = ( Scalar ` K ) ) |
|
| 6 | assapropd.6 | |- ( ph -> F = ( Scalar ` L ) ) |
|
| 7 | assapropd.7 | |- P = ( Base ` F ) |
|
| 8 | assapropd.8 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
|
| 9 | assalmod | |- ( K e. AssAlg -> K e. LMod ) |
|
| 10 | assaring | |- ( K e. AssAlg -> K e. Ring ) |
|
| 11 | 9 10 | jca | |- ( K e. AssAlg -> ( K e. LMod /\ K e. Ring ) ) |
| 12 | 11 | a1i | |- ( ph -> ( K e. AssAlg -> ( K e. LMod /\ K e. Ring ) ) ) |
| 13 | assalmod | |- ( L e. AssAlg -> L e. LMod ) |
|
| 14 | 1 2 3 5 6 7 8 | lmodpropd | |- ( ph -> ( K e. LMod <-> L e. LMod ) ) |
| 15 | 13 14 | imbitrrid | |- ( ph -> ( L e. AssAlg -> K e. LMod ) ) |
| 16 | assaring | |- ( L e. AssAlg -> L e. Ring ) |
|
| 17 | 1 2 3 4 | ringpropd | |- ( ph -> ( K e. Ring <-> L e. Ring ) ) |
| 18 | 16 17 | imbitrrid | |- ( ph -> ( L e. AssAlg -> K e. Ring ) ) |
| 19 | 15 18 | jcad | |- ( ph -> ( L e. AssAlg -> ( K e. LMod /\ K e. Ring ) ) ) |
| 20 | 14 17 | anbi12d | |- ( ph -> ( ( K e. LMod /\ K e. Ring ) <-> ( L e. LMod /\ L e. Ring ) ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( ( K e. LMod /\ K e. Ring ) <-> ( L e. LMod /\ L e. Ring ) ) ) |
| 22 | simpll | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ph ) |
|
| 23 | simplrl | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> K e. LMod ) |
|
| 24 | simprl | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> r e. P ) |
|
| 25 | 5 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` K ) ) ) |
| 26 | 7 25 | eqtrid | |- ( ph -> P = ( Base ` ( Scalar ` K ) ) ) |
| 27 | 22 26 | syl | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> P = ( Base ` ( Scalar ` K ) ) ) |
| 28 | 24 27 | eleqtrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> r e. ( Base ` ( Scalar ` K ) ) ) |
| 29 | simprrl | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> z e. B ) |
|
| 30 | 22 1 | syl | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> B = ( Base ` K ) ) |
| 31 | 29 30 | eleqtrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> z e. ( Base ` K ) ) |
| 32 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 33 | eqid | |- ( Scalar ` K ) = ( Scalar ` K ) |
|
| 34 | eqid | |- ( .s ` K ) = ( .s ` K ) |
|
| 35 | eqid | |- ( Base ` ( Scalar ` K ) ) = ( Base ` ( Scalar ` K ) ) |
|
| 36 | 32 33 34 35 | lmodvscl | |- ( ( K e. LMod /\ r e. ( Base ` ( Scalar ` K ) ) /\ z e. ( Base ` K ) ) -> ( r ( .s ` K ) z ) e. ( Base ` K ) ) |
| 37 | 23 28 31 36 | syl3anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) z ) e. ( Base ` K ) ) |
| 38 | 37 30 | eleqtrrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) z ) e. B ) |
| 39 | simprrr | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> w e. B ) |
|
| 40 | 4 | oveqrspc2v | |- ( ( ph /\ ( ( r ( .s ` K ) z ) e. B /\ w e. B ) ) -> ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( ( r ( .s ` K ) z ) ( .r ` L ) w ) ) |
| 41 | 22 38 39 40 | syl12anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( ( r ( .s ` K ) z ) ( .r ` L ) w ) ) |
| 42 | 8 | oveqrspc2v | |- ( ( ph /\ ( r e. P /\ z e. B ) ) -> ( r ( .s ` K ) z ) = ( r ( .s ` L ) z ) ) |
| 43 | 22 24 29 42 | syl12anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) z ) = ( r ( .s ` L ) z ) ) |
| 44 | 43 | oveq1d | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( ( r ( .s ` K ) z ) ( .r ` L ) w ) = ( ( r ( .s ` L ) z ) ( .r ` L ) w ) ) |
| 45 | 41 44 | eqtrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( ( r ( .s ` L ) z ) ( .r ` L ) w ) ) |
| 46 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 47 | simplrr | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> K e. Ring ) |
|
| 48 | 39 30 | eleqtrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> w e. ( Base ` K ) ) |
| 49 | 32 46 47 31 48 | ringcld | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( z ( .r ` K ) w ) e. ( Base ` K ) ) |
| 50 | 49 30 | eleqtrrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( z ( .r ` K ) w ) e. B ) |
| 51 | 8 | oveqrspc2v | |- ( ( ph /\ ( r e. P /\ ( z ( .r ` K ) w ) e. B ) ) -> ( r ( .s ` K ) ( z ( .r ` K ) w ) ) = ( r ( .s ` L ) ( z ( .r ` K ) w ) ) ) |
| 52 | 22 24 50 51 | syl12anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) ( z ( .r ` K ) w ) ) = ( r ( .s ` L ) ( z ( .r ` K ) w ) ) ) |
| 53 | 4 | oveqrspc2v | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( .r ` K ) w ) = ( z ( .r ` L ) w ) ) |
| 54 | 22 29 39 53 | syl12anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( z ( .r ` K ) w ) = ( z ( .r ` L ) w ) ) |
| 55 | 54 | oveq2d | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` L ) ( z ( .r ` K ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) |
| 56 | 52 55 | eqtrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) ( z ( .r ` K ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) |
| 57 | 45 56 | eqeq12d | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) <-> ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) |
| 58 | 32 33 34 35 | lmodvscl | |- ( ( K e. LMod /\ r e. ( Base ` ( Scalar ` K ) ) /\ w e. ( Base ` K ) ) -> ( r ( .s ` K ) w ) e. ( Base ` K ) ) |
| 59 | 23 28 48 58 | syl3anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) w ) e. ( Base ` K ) ) |
| 60 | 59 30 | eleqtrrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) w ) e. B ) |
| 61 | 4 | oveqrspc2v | |- ( ( ph /\ ( z e. B /\ ( r ( .s ` K ) w ) e. B ) ) -> ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( z ( .r ` L ) ( r ( .s ` K ) w ) ) ) |
| 62 | 22 29 60 61 | syl12anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( z ( .r ` L ) ( r ( .s ` K ) w ) ) ) |
| 63 | 8 | oveqrspc2v | |- ( ( ph /\ ( r e. P /\ w e. B ) ) -> ( r ( .s ` K ) w ) = ( r ( .s ` L ) w ) ) |
| 64 | 22 24 39 63 | syl12anc | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( r ( .s ` K ) w ) = ( r ( .s ` L ) w ) ) |
| 65 | 64 | oveq2d | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( z ( .r ` L ) ( r ( .s ` K ) w ) ) = ( z ( .r ` L ) ( r ( .s ` L ) w ) ) ) |
| 66 | 62 65 | eqtrd | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( z ( .r ` L ) ( r ( .s ` L ) w ) ) ) |
| 67 | 66 56 | eqeq12d | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) <-> ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) |
| 68 | 57 67 | anbi12d | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ ( r e. P /\ ( z e. B /\ w e. B ) ) ) -> ( ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 69 | 68 | anassrs | |- ( ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ r e. P ) /\ ( z e. B /\ w e. B ) ) -> ( ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 70 | 69 | 2ralbidva | |- ( ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) /\ r e. P ) -> ( A. z e. B A. w e. B ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> A. z e. B A. w e. B ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 71 | 70 | ralbidva | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. r e. P A. z e. B A. w e. B ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> A. r e. P A. z e. B A. w e. B ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 72 | 26 | adantr | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> P = ( Base ` ( Scalar ` K ) ) ) |
| 73 | 1 | adantr | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> B = ( Base ` K ) ) |
| 74 | 73 | raleqdv | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. w e. B ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> A. w e. ( Base ` K ) ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) ) ) |
| 75 | 73 74 | raleqbidv | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. z e. B A. w e. B ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> A. z e. ( Base ` K ) A. w e. ( Base ` K ) ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) ) ) |
| 76 | 72 75 | raleqbidv | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. r e. P A. z e. B A. w e. B ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> A. r e. ( Base ` ( Scalar ` K ) ) A. z e. ( Base ` K ) A. w e. ( Base ` K ) ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) ) ) |
| 77 | 6 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` L ) ) ) |
| 78 | 7 77 | eqtrid | |- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
| 79 | 78 | adantr | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> P = ( Base ` ( Scalar ` L ) ) ) |
| 80 | 2 | adantr | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> B = ( Base ` L ) ) |
| 81 | 80 | raleqdv | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. w e. B ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) <-> A. w e. ( Base ` L ) ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 82 | 80 81 | raleqbidv | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. z e. B A. w e. B ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) <-> A. z e. ( Base ` L ) A. w e. ( Base ` L ) ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 83 | 79 82 | raleqbidv | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. r e. P A. z e. B A. w e. B ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) <-> A. r e. ( Base ` ( Scalar ` L ) ) A. z e. ( Base ` L ) A. w e. ( Base ` L ) ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 84 | 71 76 83 | 3bitr3d | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( A. r e. ( Base ` ( Scalar ` K ) ) A. z e. ( Base ` K ) A. w e. ( Base ` K ) ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) <-> A. r e. ( Base ` ( Scalar ` L ) ) A. z e. ( Base ` L ) A. w e. ( Base ` L ) ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 85 | 21 84 | anbi12d | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( ( ( K e. LMod /\ K e. Ring ) /\ A. r e. ( Base ` ( Scalar ` K ) ) A. z e. ( Base ` K ) A. w e. ( Base ` K ) ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) ) <-> ( ( L e. LMod /\ L e. Ring ) /\ A. r e. ( Base ` ( Scalar ` L ) ) A. z e. ( Base ` L ) A. w e. ( Base ` L ) ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) ) |
| 86 | 32 33 35 34 46 | isassa | |- ( K e. AssAlg <-> ( ( K e. LMod /\ K e. Ring ) /\ A. r e. ( Base ` ( Scalar ` K ) ) A. z e. ( Base ` K ) A. w e. ( Base ` K ) ( ( ( r ( .s ` K ) z ) ( .r ` K ) w ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) /\ ( z ( .r ` K ) ( r ( .s ` K ) w ) ) = ( r ( .s ` K ) ( z ( .r ` K ) w ) ) ) ) ) |
| 87 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 88 | eqid | |- ( Scalar ` L ) = ( Scalar ` L ) |
|
| 89 | eqid | |- ( Base ` ( Scalar ` L ) ) = ( Base ` ( Scalar ` L ) ) |
|
| 90 | eqid | |- ( .s ` L ) = ( .s ` L ) |
|
| 91 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 92 | 87 88 89 90 91 | isassa | |- ( L e. AssAlg <-> ( ( L e. LMod /\ L e. Ring ) /\ A. r e. ( Base ` ( Scalar ` L ) ) A. z e. ( Base ` L ) A. w e. ( Base ` L ) ( ( ( r ( .s ` L ) z ) ( .r ` L ) w ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) /\ ( z ( .r ` L ) ( r ( .s ` L ) w ) ) = ( r ( .s ` L ) ( z ( .r ` L ) w ) ) ) ) ) |
| 93 | 85 86 92 | 3bitr4g | |- ( ( ph /\ ( K e. LMod /\ K e. Ring ) ) -> ( K e. AssAlg <-> L e. AssAlg ) ) |
| 94 | 93 | ex | |- ( ph -> ( ( K e. LMod /\ K e. Ring ) -> ( K e. AssAlg <-> L e. AssAlg ) ) ) |
| 95 | 12 19 94 | pm5.21ndd | |- ( ph -> ( K e. AssAlg <-> L e. AssAlg ) ) |