This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 27-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| lmodpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| lmodpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| lmodpropd.4 | |- ( ph -> F = ( Scalar ` K ) ) |
||
| lmodpropd.5 | |- ( ph -> F = ( Scalar ` L ) ) |
||
| lmodpropd.6 | |- P = ( Base ` F ) |
||
| lmodpropd.7 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
||
| Assertion | lmodpropd | |- ( ph -> ( K e. LMod <-> L e. LMod ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | lmodpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | lmodpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | lmodpropd.4 | |- ( ph -> F = ( Scalar ` K ) ) |
|
| 5 | lmodpropd.5 | |- ( ph -> F = ( Scalar ` L ) ) |
|
| 6 | lmodpropd.6 | |- P = ( Base ` F ) |
|
| 7 | lmodpropd.7 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
|
| 8 | eqid | |- ( Scalar ` K ) = ( Scalar ` K ) |
|
| 9 | eqid | |- ( Scalar ` L ) = ( Scalar ` L ) |
|
| 10 | 4 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` K ) ) ) |
| 11 | 6 10 | eqtrid | |- ( ph -> P = ( Base ` ( Scalar ` K ) ) ) |
| 12 | 5 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` L ) ) ) |
| 13 | 6 12 | eqtrid | |- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
| 14 | 4 5 | eqtr3d | |- ( ph -> ( Scalar ` K ) = ( Scalar ` L ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( Scalar ` K ) = ( Scalar ` L ) ) |
| 16 | 15 | fveq2d | |- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( +g ` ( Scalar ` K ) ) = ( +g ` ( Scalar ` L ) ) ) |
| 17 | 16 | oveqd | |- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( +g ` ( Scalar ` K ) ) y ) = ( x ( +g ` ( Scalar ` L ) ) y ) ) |
| 18 | 15 | fveq2d | |- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( .r ` ( Scalar ` K ) ) = ( .r ` ( Scalar ` L ) ) ) |
| 19 | 18 | oveqd | |- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( .r ` ( Scalar ` K ) ) y ) = ( x ( .r ` ( Scalar ` L ) ) y ) ) |
| 20 | 1 2 8 9 11 13 3 17 19 7 | lmodprop2d | |- ( ph -> ( K e. LMod <-> L e. LMod ) ) |