This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lssintcl.s | |- S = ( LSubSp ` W ) |
|
| Assertion | lssintcl | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssintcl.s | |- S = ( LSubSp ` W ) |
|
| 2 | eqidd | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Scalar ` W ) = ( Scalar ` W ) ) |
|
| 3 | eqidd | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
|
| 4 | eqidd | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( Base ` W ) = ( Base ` W ) ) |
|
| 5 | eqidd | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( +g ` W ) = ( +g ` W ) ) |
|
| 6 | eqidd | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( .s ` W ) = ( .s ` W ) ) |
|
| 7 | 1 | a1i | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> S = ( LSubSp ` W ) ) |
| 8 | intssuni2 | |- ( ( A C_ S /\ A =/= (/) ) -> |^| A C_ U. S ) |
|
| 9 | 8 | 3adant1 | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A C_ U. S ) |
| 10 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 11 | 10 1 | lssss | |- ( y e. S -> y C_ ( Base ` W ) ) |
| 12 | velpw | |- ( y e. ~P ( Base ` W ) <-> y C_ ( Base ` W ) ) |
|
| 13 | 11 12 | sylibr | |- ( y e. S -> y e. ~P ( Base ` W ) ) |
| 14 | 13 | ssriv | |- S C_ ~P ( Base ` W ) |
| 15 | sspwuni | |- ( S C_ ~P ( Base ` W ) <-> U. S C_ ( Base ` W ) ) |
|
| 16 | 14 15 | mpbi | |- U. S C_ ( Base ` W ) |
| 17 | 9 16 | sstrdi | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A C_ ( Base ` W ) ) |
| 18 | simpl1 | |- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> W e. LMod ) |
|
| 19 | simp2 | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> A C_ S ) |
|
| 20 | 19 | sselda | |- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> y e. S ) |
| 21 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 22 | 21 1 | lss0cl | |- ( ( W e. LMod /\ y e. S ) -> ( 0g ` W ) e. y ) |
| 23 | 18 20 22 | syl2anc | |- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ y e. A ) -> ( 0g ` W ) e. y ) |
| 24 | 23 | ralrimiva | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> A. y e. A ( 0g ` W ) e. y ) |
| 25 | fvex | |- ( 0g ` W ) e. _V |
|
| 26 | 25 | elint2 | |- ( ( 0g ` W ) e. |^| A <-> A. y e. A ( 0g ` W ) e. y ) |
| 27 | 24 26 | sylibr | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> ( 0g ` W ) e. |^| A ) |
| 28 | 27 | ne0d | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A =/= (/) ) |
| 29 | 20 | adantlr | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> y e. S ) |
| 30 | simplr1 | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
|
| 31 | simplr2 | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> a e. |^| A ) |
|
| 32 | simpr | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> y e. A ) |
|
| 33 | elinti | |- ( a e. |^| A -> ( y e. A -> a e. y ) ) |
|
| 34 | 31 32 33 | sylc | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> a e. y ) |
| 35 | simplr3 | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> b e. |^| A ) |
|
| 36 | elinti | |- ( b e. |^| A -> ( y e. A -> b e. y ) ) |
|
| 37 | 35 32 36 | sylc | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> b e. y ) |
| 38 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 39 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 40 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 41 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 42 | 38 39 40 41 1 | lsscl | |- ( ( y e. S /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. y /\ b e. y ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
| 43 | 29 30 34 37 42 | syl13anc | |- ( ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) /\ y e. A ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
| 44 | 43 | ralrimiva | |- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) -> A. y e. A ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
| 45 | ovex | |- ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. _V |
|
| 46 | 45 | elint2 | |- ( ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. |^| A <-> A. y e. A ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. y ) |
| 47 | 44 46 | sylibr | |- ( ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. |^| A /\ b e. |^| A ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. |^| A ) |
| 48 | 2 3 4 5 6 7 17 28 47 | islssd | |- ( ( W e. LMod /\ A C_ S /\ A =/= (/) ) -> |^| A e. S ) |