This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse (negation) of a lifted scalar is the lifted negation of the scalar. (Contributed by AV, 2-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclinvg.a | |- A = ( algSc ` W ) |
|
| asclinvg.r | |- R = ( Scalar ` W ) |
||
| asclinvg.k | |- B = ( Base ` R ) |
||
| asclinvg.i | |- I = ( invg ` R ) |
||
| asclinvg.j | |- J = ( invg ` W ) |
||
| Assertion | asclinvg | |- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> ( J ` ( A ` C ) ) = ( A ` ( I ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclinvg.a | |- A = ( algSc ` W ) |
|
| 2 | asclinvg.r | |- R = ( Scalar ` W ) |
|
| 3 | asclinvg.k | |- B = ( Base ` R ) |
|
| 4 | asclinvg.i | |- I = ( invg ` R ) |
|
| 5 | asclinvg.j | |- J = ( invg ` W ) |
|
| 6 | simp2 | |- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> W e. Ring ) |
|
| 7 | simp1 | |- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> W e. LMod ) |
|
| 8 | 1 2 6 7 | asclghm | |- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> A e. ( R GrpHom W ) ) |
| 9 | simp3 | |- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> C e. B ) |
|
| 10 | 3 4 5 | ghminv | |- ( ( A e. ( R GrpHom W ) /\ C e. B ) -> ( A ` ( I ` C ) ) = ( J ` ( A ` C ) ) ) |
| 11 | 10 | eqcomd | |- ( ( A e. ( R GrpHom W ) /\ C e. B ) -> ( J ` ( A ` C ) ) = ( A ` ( I ` C ) ) ) |
| 12 | 8 9 11 | syl2anc | |- ( ( W e. LMod /\ W e. Ring /\ C e. B ) -> ( J ` ( A ` C ) ) = ( A ` ( I ` C ) ) ) |