This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs function by transfinite recursion, starting from _om . Using this theorem we could define the aleph function with { z e. On | z ~<_ x } in place of |^| { z e. On | x ~< z } in df-aleph . (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsuc2 | |- ( A e. On -> ( aleph ` suc A ) = { x e. On | x ~<_ ( aleph ` A ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon | |- ( aleph ` suc A ) e. On |
|
| 2 | 1 | oneli | |- ( y e. ( aleph ` suc A ) -> y e. On ) |
| 3 | alephcard | |- ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) |
|
| 4 | iscard | |- ( ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) <-> ( ( aleph ` suc A ) e. On /\ A. y e. ( aleph ` suc A ) y ~< ( aleph ` suc A ) ) ) |
|
| 5 | 3 4 | mpbi | |- ( ( aleph ` suc A ) e. On /\ A. y e. ( aleph ` suc A ) y ~< ( aleph ` suc A ) ) |
| 6 | 5 | simpri | |- A. y e. ( aleph ` suc A ) y ~< ( aleph ` suc A ) |
| 7 | 6 | rspec | |- ( y e. ( aleph ` suc A ) -> y ~< ( aleph ` suc A ) ) |
| 8 | 2 7 | jca | |- ( y e. ( aleph ` suc A ) -> ( y e. On /\ y ~< ( aleph ` suc A ) ) ) |
| 9 | sdomel | |- ( ( y e. On /\ ( aleph ` suc A ) e. On ) -> ( y ~< ( aleph ` suc A ) -> y e. ( aleph ` suc A ) ) ) |
|
| 10 | 1 9 | mpan2 | |- ( y e. On -> ( y ~< ( aleph ` suc A ) -> y e. ( aleph ` suc A ) ) ) |
| 11 | 10 | imp | |- ( ( y e. On /\ y ~< ( aleph ` suc A ) ) -> y e. ( aleph ` suc A ) ) |
| 12 | 8 11 | impbii | |- ( y e. ( aleph ` suc A ) <-> ( y e. On /\ y ~< ( aleph ` suc A ) ) ) |
| 13 | breq1 | |- ( x = y -> ( x ~< ( aleph ` suc A ) <-> y ~< ( aleph ` suc A ) ) ) |
|
| 14 | 13 | elrab | |- ( y e. { x e. On | x ~< ( aleph ` suc A ) } <-> ( y e. On /\ y ~< ( aleph ` suc A ) ) ) |
| 15 | 12 14 | bitr4i | |- ( y e. ( aleph ` suc A ) <-> y e. { x e. On | x ~< ( aleph ` suc A ) } ) |
| 16 | 15 | eqriv | |- ( aleph ` suc A ) = { x e. On | x ~< ( aleph ` suc A ) } |
| 17 | alephsucdom | |- ( A e. On -> ( x ~<_ ( aleph ` A ) <-> x ~< ( aleph ` suc A ) ) ) |
|
| 18 | 17 | rabbidv | |- ( A e. On -> { x e. On | x ~<_ ( aleph ` A ) } = { x e. On | x ~< ( aleph ` suc A ) } ) |
| 19 | 16 18 | eqtr4id | |- ( A e. On -> ( aleph ` suc A ) = { x e. On | x ~<_ ( aleph ` A ) } ) |