This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephdom | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsseleq | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
|
| 2 | alephord | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
|
| 3 | sdomdom | |- ( ( aleph ` A ) ~< ( aleph ` B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) |
|
| 4 | 2 3 | biimtrdi | |- ( ( A e. On /\ B e. On ) -> ( A e. B -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 5 | fvex | |- ( aleph ` A ) e. _V |
|
| 6 | fveq2 | |- ( A = B -> ( aleph ` A ) = ( aleph ` B ) ) |
|
| 7 | eqeng | |- ( ( aleph ` A ) e. _V -> ( ( aleph ` A ) = ( aleph ` B ) -> ( aleph ` A ) ~~ ( aleph ` B ) ) ) |
|
| 8 | 5 6 7 | mpsyl | |- ( A = B -> ( aleph ` A ) ~~ ( aleph ` B ) ) |
| 9 | 8 | a1i | |- ( ( A e. On /\ B e. On ) -> ( A = B -> ( aleph ` A ) ~~ ( aleph ` B ) ) ) |
| 10 | endom | |- ( ( aleph ` A ) ~~ ( aleph ` B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) |
|
| 11 | 9 10 | syl6 | |- ( ( A e. On /\ B e. On ) -> ( A = B -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 12 | 4 11 | jaod | |- ( ( A e. On /\ B e. On ) -> ( ( A e. B \/ A = B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 13 | 1 12 | sylbid | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 14 | eloni | |- ( B e. On -> Ord B ) |
|
| 15 | eloni | |- ( A e. On -> Ord A ) |
|
| 16 | ordtri2or | |- ( ( Ord B /\ Ord A ) -> ( B e. A \/ A C_ B ) ) |
|
| 17 | 14 15 16 | syl2anr | |- ( ( A e. On /\ B e. On ) -> ( B e. A \/ A C_ B ) ) |
| 18 | 17 | ord | |- ( ( A e. On /\ B e. On ) -> ( -. B e. A -> A C_ B ) ) |
| 19 | 18 | con1d | |- ( ( A e. On /\ B e. On ) -> ( -. A C_ B -> B e. A ) ) |
| 20 | alephord | |- ( ( B e. On /\ A e. On ) -> ( B e. A <-> ( aleph ` B ) ~< ( aleph ` A ) ) ) |
|
| 21 | 20 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B e. A <-> ( aleph ` B ) ~< ( aleph ` A ) ) ) |
| 22 | sdomnen | |- ( ( aleph ` B ) ~< ( aleph ` A ) -> -. ( aleph ` B ) ~~ ( aleph ` A ) ) |
|
| 23 | sdomdom | |- ( ( aleph ` B ) ~< ( aleph ` A ) -> ( aleph ` B ) ~<_ ( aleph ` A ) ) |
|
| 24 | sbth | |- ( ( ( aleph ` B ) ~<_ ( aleph ` A ) /\ ( aleph ` A ) ~<_ ( aleph ` B ) ) -> ( aleph ` B ) ~~ ( aleph ` A ) ) |
|
| 25 | 24 | ex | |- ( ( aleph ` B ) ~<_ ( aleph ` A ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> ( aleph ` B ) ~~ ( aleph ` A ) ) ) |
| 26 | 23 25 | syl | |- ( ( aleph ` B ) ~< ( aleph ` A ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> ( aleph ` B ) ~~ ( aleph ` A ) ) ) |
| 27 | 22 26 | mtod | |- ( ( aleph ` B ) ~< ( aleph ` A ) -> -. ( aleph ` A ) ~<_ ( aleph ` B ) ) |
| 28 | 21 27 | biimtrdi | |- ( ( A e. On /\ B e. On ) -> ( B e. A -> -. ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 29 | 19 28 | syld | |- ( ( A e. On /\ B e. On ) -> ( -. A C_ B -> -. ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 30 | 13 29 | impcon4bid | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |