This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsmo | |- Smo aleph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- On C_ On |
|
| 2 | ordon | |- Ord On |
|
| 3 | alephord2i | |- ( x e. On -> ( y e. x -> ( aleph ` y ) e. ( aleph ` x ) ) ) |
|
| 4 | 3 | ralrimiv | |- ( x e. On -> A. y e. x ( aleph ` y ) e. ( aleph ` x ) ) |
| 5 | 4 | rgen | |- A. x e. On A. y e. x ( aleph ` y ) e. ( aleph ` x ) |
| 6 | alephfnon | |- aleph Fn On |
|
| 7 | alephsson | |- ran aleph C_ On |
|
| 8 | df-f | |- ( aleph : On --> On <-> ( aleph Fn On /\ ran aleph C_ On ) ) |
|
| 9 | 6 7 8 | mpbir2an | |- aleph : On --> On |
| 10 | issmo2 | |- ( aleph : On --> On -> ( ( On C_ On /\ Ord On /\ A. x e. On A. y e. x ( aleph ` y ) e. ( aleph ` x ) ) -> Smo aleph ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ( On C_ On /\ Ord On /\ A. x e. On A. y e. x ( aleph ` y ) e. ( aleph ` x ) ) -> Smo aleph ) |
| 12 | 1 2 5 11 | mp3an | |- Smo aleph |