This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclprlem1 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) | |
| 2 | ltrnq | ⊢ ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( *Q ‘ ( 𝑔 +Q ℎ ) ) <Q ( *Q ‘ 𝑥 ) ) | |
| 3 | ltmnq | ⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) <Q ( *Q ‘ 𝑥 ) ↔ ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) <Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) ) | |
| 4 | ovex | ⊢ ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ∈ V | |
| 5 | ovex | ⊢ ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ∈ V | |
| 6 | ltmnq | ⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑧 ↔ ( 𝑤 ·Q 𝑦 ) <Q ( 𝑤 ·Q 𝑧 ) ) ) | |
| 7 | vex | ⊢ 𝑔 ∈ V | |
| 8 | mulcomnq | ⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) | |
| 9 | 4 5 6 7 8 | caovord2 | ⊢ ( 𝑔 ∈ Q → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) <Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ) ) |
| 10 | 3 9 | sylan9bbr | ⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) <Q ( *Q ‘ 𝑥 ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ) ) |
| 11 | 2 10 | bitrid | ⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ) ) |
| 12 | recidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑥 ∈ Q → ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) = ( 1Q ·Q 𝑔 ) ) |
| 14 | mulcomnq | ⊢ ( 1Q ·Q 𝑔 ) = ( 𝑔 ·Q 1Q ) | |
| 15 | mulidnq | ⊢ ( 𝑔 ∈ Q → ( 𝑔 ·Q 1Q ) = 𝑔 ) | |
| 16 | 14 15 | eqtrid | ⊢ ( 𝑔 ∈ Q → ( 1Q ·Q 𝑔 ) = 𝑔 ) |
| 17 | 13 16 | sylan9eqr | ⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) = 𝑔 ) |
| 18 | 17 | breq2d | ⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q 𝑔 ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 ) ) |
| 19 | 11 18 | bitrd | ⊢ ( ( 𝑔 ∈ Q ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 ) ) |
| 20 | 1 19 | sylan | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 ) ) |
| 21 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) | |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) <Q 𝑔 → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |
| 23 | 20 22 | sylbid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |