This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015) Avoid axioms. (Revised by SN, 14-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralss | |- ( A C_ B -> ( A. x e. A ph <-> A. x e. B ( x e. A -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 2 | id | |- ( ( x e. A -> x e. B ) -> ( x e. A -> x e. B ) ) |
|
| 3 | 2 | pm4.71rd | |- ( ( x e. A -> x e. B ) -> ( x e. A <-> ( x e. B /\ x e. A ) ) ) |
| 4 | 3 | imbi1d | |- ( ( x e. A -> x e. B ) -> ( ( x e. A -> ph ) <-> ( ( x e. B /\ x e. A ) -> ph ) ) ) |
| 5 | impexp | |- ( ( ( x e. B /\ x e. A ) -> ph ) <-> ( x e. B -> ( x e. A -> ph ) ) ) |
|
| 6 | 4 5 | bitrdi | |- ( ( x e. A -> x e. B ) -> ( ( x e. A -> ph ) <-> ( x e. B -> ( x e. A -> ph ) ) ) ) |
| 7 | 6 | alimi | |- ( A. x ( x e. A -> x e. B ) -> A. x ( ( x e. A -> ph ) <-> ( x e. B -> ( x e. A -> ph ) ) ) ) |
| 8 | 1 7 | sylbi | |- ( A C_ B -> A. x ( ( x e. A -> ph ) <-> ( x e. B -> ( x e. A -> ph ) ) ) ) |
| 9 | albi | |- ( A. x ( ( x e. A -> ph ) <-> ( x e. B -> ( x e. A -> ph ) ) ) -> ( A. x ( x e. A -> ph ) <-> A. x ( x e. B -> ( x e. A -> ph ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( A C_ B -> ( A. x ( x e. A -> ph ) <-> A. x ( x e. B -> ( x e. A -> ph ) ) ) ) |
| 11 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 12 | df-ral | |- ( A. x e. B ( x e. A -> ph ) <-> A. x ( x e. B -> ( x e. A -> ph ) ) ) |
|
| 13 | 10 11 12 | 3bitr4g | |- ( A C_ B -> ( A. x e. A ph <-> A. x e. B ( x e. A -> ph ) ) ) |