This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acsfn0 | |- ( ( X e. V /\ K e. X ) -> { a e. ~P X | K e. a } e. ( ACS ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ a |
|
| 2 | 1 | a1bi | |- ( K e. a <-> ( (/) C_ a -> K e. a ) ) |
| 3 | 2 | rabbii | |- { a e. ~P X | K e. a } = { a e. ~P X | ( (/) C_ a -> K e. a ) } |
| 4 | 0ss | |- (/) C_ X |
|
| 5 | 0fi | |- (/) e. Fin |
|
| 6 | acsfn | |- ( ( ( X e. V /\ K e. X ) /\ ( (/) C_ X /\ (/) e. Fin ) ) -> { a e. ~P X | ( (/) C_ a -> K e. a ) } e. ( ACS ` X ) ) |
|
| 7 | 4 5 6 | mpanr12 | |- ( ( X e. V /\ K e. X ) -> { a e. ~P X | ( (/) C_ a -> K e. a ) } e. ( ACS ` X ) ) |
| 8 | 3 7 | eqeltrid | |- ( ( X e. V /\ K e. X ) -> { a e. ~P X | K e. a } e. ( ACS ` X ) ) |