This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of ceqsalv . (Contributed by NM, 21-Jun-2013) Avoid ax-9 , ax-12 , ax-ext . (Revised by SN, 8-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ceqsralv.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | ceqsralv | |- ( A e. B -> ( A. x e. B ( x = A -> ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsralv.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | 1 | pm5.74i | |- ( ( x = A -> ph ) <-> ( x = A -> ps ) ) |
| 3 | 2 | ralbii | |- ( A. x e. B ( x = A -> ph ) <-> A. x e. B ( x = A -> ps ) ) |
| 4 | r19.23v | |- ( A. x e. B ( x = A -> ps ) <-> ( E. x e. B x = A -> ps ) ) |
|
| 5 | risset | |- ( A e. B <-> E. x e. B x = A ) |
|
| 6 | pm5.5 | |- ( E. x e. B x = A -> ( ( E. x e. B x = A -> ps ) <-> ps ) ) |
|
| 7 | 5 6 | sylbi | |- ( A e. B -> ( ( E. x e. B x = A -> ps ) <-> ps ) ) |
| 8 | 4 7 | bitrid | |- ( A e. B -> ( A. x e. B ( x = A -> ps ) <-> ps ) ) |
| 9 | 3 8 | bitrid | |- ( A e. B -> ( A. x e. B ( x = A -> ph ) <-> ps ) ) |