This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval2 | |- ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 2 | 1 | fveq2i | |- ( Ack ` 2 ) = ( Ack ` ( 1 + 1 ) ) |
| 3 | 1nn0 | |- 1 e. NN0 |
|
| 4 | ackvalsuc1mpt | |- ( 1 e. NN0 -> ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) |
| 6 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 7 | 2nn0 | |- 2 e. NN0 |
|
| 8 | ackval1 | |- ( Ack ` 1 ) = ( i e. NN0 |-> ( i + 2 ) ) |
|
| 9 | 8 | itcovalpc | |- ( ( ( n + 1 ) e. NN0 /\ 2 e. NN0 ) -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) |
| 10 | 6 7 9 | sylancl | |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) |
| 11 | 10 | fveq1d | |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) ) |
| 12 | eqidd | |- ( n e. NN0 -> ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) |
|
| 13 | oveq1 | |- ( i = 1 -> ( i + ( 2 x. ( n + 1 ) ) ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) |
|
| 14 | 13 | adantl | |- ( ( n e. NN0 /\ i = 1 ) -> ( i + ( 2 x. ( n + 1 ) ) ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) |
| 15 | 3 | a1i | |- ( n e. NN0 -> 1 e. NN0 ) |
| 16 | ovexd | |- ( n e. NN0 -> ( 1 + ( 2 x. ( n + 1 ) ) ) e. _V ) |
|
| 17 | 12 14 15 16 | fvmptd | |- ( n e. NN0 -> ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) |
| 18 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 19 | 1cnd | |- ( n e. CC -> 1 e. CC ) |
|
| 20 | 2cnd | |- ( n e. CC -> 2 e. CC ) |
|
| 21 | peano2cn | |- ( n e. CC -> ( n + 1 ) e. CC ) |
|
| 22 | 20 21 | mulcld | |- ( n e. CC -> ( 2 x. ( n + 1 ) ) e. CC ) |
| 23 | 19 22 | addcomd | |- ( n e. CC -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. ( n + 1 ) ) + 1 ) ) |
| 24 | id | |- ( n e. CC -> n e. CC ) |
|
| 25 | 20 24 19 | adddid | |- ( n e. CC -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) |
| 26 | 25 | oveq1d | |- ( n e. CC -> ( ( 2 x. ( n + 1 ) ) + 1 ) = ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) ) |
| 27 | 20 24 | mulcld | |- ( n e. CC -> ( 2 x. n ) e. CC ) |
| 28 | 20 19 | mulcld | |- ( n e. CC -> ( 2 x. 1 ) e. CC ) |
| 29 | 27 28 19 | addassd | |- ( n e. CC -> ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) = ( ( 2 x. n ) + ( ( 2 x. 1 ) + 1 ) ) ) |
| 30 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 31 | 30 | oveq1i | |- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
| 32 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 33 | 31 32 | eqtri | |- ( ( 2 x. 1 ) + 1 ) = 3 |
| 34 | 33 | a1i | |- ( n e. CC -> ( ( 2 x. 1 ) + 1 ) = 3 ) |
| 35 | 34 | oveq2d | |- ( n e. CC -> ( ( 2 x. n ) + ( ( 2 x. 1 ) + 1 ) ) = ( ( 2 x. n ) + 3 ) ) |
| 36 | 29 35 | eqtrd | |- ( n e. CC -> ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) = ( ( 2 x. n ) + 3 ) ) |
| 37 | 23 26 36 | 3eqtrd | |- ( n e. CC -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. n ) + 3 ) ) |
| 38 | 18 37 | syl | |- ( n e. NN0 -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. n ) + 3 ) ) |
| 39 | 11 17 38 | 3eqtrd | |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 x. n ) + 3 ) ) |
| 40 | 39 | mpteq2ia | |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) |
| 41 | 2 5 40 | 3eqtri | |- ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) |