This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at 1. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval1 | |- ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 2 | 1 | fveq2i | |- ( Ack ` 1 ) = ( Ack ` ( 0 + 1 ) ) |
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | ackvalsuc1mpt | |- ( 0 e. NN0 -> ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) |
| 6 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 7 | 1nn0 | |- 1 e. NN0 |
|
| 8 | ackval0 | |- ( Ack ` 0 ) = ( i e. NN0 |-> ( i + 1 ) ) |
|
| 9 | 8 | itcovalpc | |- ( ( ( n + 1 ) e. NN0 /\ 1 e. NN0 ) -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) |
| 10 | 6 7 9 | sylancl | |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) ) |
| 11 | nn0cn | |- ( ( n + 1 ) e. NN0 -> ( n + 1 ) e. CC ) |
|
| 12 | 6 11 | syl | |- ( n e. NN0 -> ( n + 1 ) e. CC ) |
| 13 | 12 | mullidd | |- ( n e. NN0 -> ( 1 x. ( n + 1 ) ) = ( n + 1 ) ) |
| 14 | 13 | oveq2d | |- ( n e. NN0 -> ( i + ( 1 x. ( n + 1 ) ) ) = ( i + ( n + 1 ) ) ) |
| 15 | 14 | mpteq2dv | |- ( n e. NN0 -> ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) |
| 16 | 10 15 | eqtrd | |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) |
| 17 | 16 | fveq1d | |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) ) |
| 18 | eqidd | |- ( n e. NN0 -> ( i e. NN0 |-> ( i + ( n + 1 ) ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ) |
|
| 19 | oveq1 | |- ( i = 1 -> ( i + ( n + 1 ) ) = ( 1 + ( n + 1 ) ) ) |
|
| 20 | 19 | adantl | |- ( ( n e. NN0 /\ i = 1 ) -> ( i + ( n + 1 ) ) = ( 1 + ( n + 1 ) ) ) |
| 21 | 7 | a1i | |- ( n e. NN0 -> 1 e. NN0 ) |
| 22 | ovexd | |- ( n e. NN0 -> ( 1 + ( n + 1 ) ) e. _V ) |
|
| 23 | 18 20 21 22 | fvmptd | |- ( n e. NN0 -> ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) = ( 1 + ( n + 1 ) ) ) |
| 24 | 1cnd | |- ( n e. NN0 -> 1 e. CC ) |
|
| 25 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 26 | peano2cn | |- ( n e. CC -> ( n + 1 ) e. CC ) |
|
| 27 | 25 26 | syl | |- ( n e. NN0 -> ( n + 1 ) e. CC ) |
| 28 | 24 27 | addcomd | |- ( n e. NN0 -> ( 1 + ( n + 1 ) ) = ( ( n + 1 ) + 1 ) ) |
| 29 | 25 24 24 | addassd | |- ( n e. NN0 -> ( ( n + 1 ) + 1 ) = ( n + ( 1 + 1 ) ) ) |
| 30 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 31 | 30 | oveq2i | |- ( n + ( 1 + 1 ) ) = ( n + 2 ) |
| 32 | 31 | a1i | |- ( n e. NN0 -> ( n + ( 1 + 1 ) ) = ( n + 2 ) ) |
| 33 | 28 29 32 | 3eqtrd | |- ( n e. NN0 -> ( 1 + ( n + 1 ) ) = ( n + 2 ) ) |
| 34 | 17 23 33 | 3eqtrd | |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( n + 2 ) ) |
| 35 | 34 | mpteq2ia | |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( n + 2 ) ) |
| 36 | 2 5 35 | 3eqtri | |- ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) |