This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024) (Revised by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackvalsuc1mpt | |- ( M e. NN0 -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ack | |- Ack = seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) |
|
| 2 | 1 | fveq1i | |- ( Ack ` ( M + 1 ) ) = ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) |
| 3 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 4 | id | |- ( M e. NN0 -> M e. NN0 ) |
|
| 5 | eqid | |- ( M + 1 ) = ( M + 1 ) |
|
| 6 | 1 | eqcomi | |- seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) = Ack |
| 7 | 6 | fveq1i | |- ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` M ) = ( Ack ` M ) |
| 8 | 7 | a1i | |- ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` M ) = ( Ack ` M ) ) |
| 9 | eqidd | |- ( M e. NN0 -> ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) = ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) |
|
| 10 | nn0p1gt0 | |- ( M e. NN0 -> 0 < ( M + 1 ) ) |
|
| 11 | 10 | gt0ne0d | |- ( M e. NN0 -> ( M + 1 ) =/= 0 ) |
| 12 | 11 | adantr | |- ( ( M e. NN0 /\ i = ( M + 1 ) ) -> ( M + 1 ) =/= 0 ) |
| 13 | neeq1 | |- ( i = ( M + 1 ) -> ( i =/= 0 <-> ( M + 1 ) =/= 0 ) ) |
|
| 14 | 13 | adantl | |- ( ( M e. NN0 /\ i = ( M + 1 ) ) -> ( i =/= 0 <-> ( M + 1 ) =/= 0 ) ) |
| 15 | 12 14 | mpbird | |- ( ( M e. NN0 /\ i = ( M + 1 ) ) -> i =/= 0 ) |
| 16 | 15 | neneqd | |- ( ( M e. NN0 /\ i = ( M + 1 ) ) -> -. i = 0 ) |
| 17 | 16 | iffalsed | |- ( ( M e. NN0 /\ i = ( M + 1 ) ) -> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) = i ) |
| 18 | simpr | |- ( ( M e. NN0 /\ i = ( M + 1 ) ) -> i = ( M + 1 ) ) |
|
| 19 | 17 18 | eqtrd | |- ( ( M e. NN0 /\ i = ( M + 1 ) ) -> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) = ( M + 1 ) ) |
| 20 | peano2nn0 | |- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
|
| 21 | 9 19 20 20 | fvmptd | |- ( M e. NN0 -> ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` ( M + 1 ) ) = ( M + 1 ) ) |
| 22 | 3 4 5 8 21 | seqp1d | |- ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) = ( ( Ack ` M ) ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ( M + 1 ) ) ) |
| 23 | eqidd | |- ( M e. NN0 -> ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) = ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ) |
|
| 24 | fveq2 | |- ( f = ( Ack ` M ) -> ( IterComp ` f ) = ( IterComp ` ( Ack ` M ) ) ) |
|
| 25 | 24 | fveq1d | |- ( f = ( Ack ` M ) -> ( ( IterComp ` f ) ` ( n + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ) |
| 26 | 25 | fveq1d | |- ( f = ( Ack ` M ) -> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) |
| 27 | 26 | mpteq2dv | |- ( f = ( Ack ` M ) -> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 28 | 27 | ad2antrl | |- ( ( M e. NN0 /\ ( f = ( Ack ` M ) /\ j = ( M + 1 ) ) ) -> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 29 | fvexd | |- ( M e. NN0 -> ( Ack ` M ) e. _V ) |
|
| 30 | ovexd | |- ( M e. NN0 -> ( M + 1 ) e. _V ) |
|
| 31 | nn0ex | |- NN0 e. _V |
|
| 32 | 31 | mptex | |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) e. _V |
| 33 | 32 | a1i | |- ( M e. NN0 -> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) e. _V ) |
| 34 | 23 28 29 30 33 | ovmpod | |- ( M e. NN0 -> ( ( Ack ` M ) ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 35 | 22 34 | eqtrd | |- ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 36 | 2 35 | eqtrid | |- ( M e. NN0 -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |