This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval3 | |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 2 | 1 | fveq2i | |- ( Ack ` 3 ) = ( Ack ` ( 2 + 1 ) ) |
| 3 | 2nn0 | |- 2 e. NN0 |
|
| 4 | ackvalsuc1mpt | |- ( 2 e. NN0 -> ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) |
| 6 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 7 | 3nn0 | |- 3 e. NN0 |
|
| 8 | ackval2 | |- ( Ack ` 2 ) = ( i e. NN0 |-> ( ( 2 x. i ) + 3 ) ) |
|
| 9 | 8 | itcovalt2 | |- ( ( ( n + 1 ) e. NN0 /\ 3 e. NN0 ) -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) |
| 10 | 6 7 9 | sylancl | |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) |
| 11 | 10 | fveq1d | |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) ) |
| 12 | eqidd | |- ( n e. NN0 -> ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) |
|
| 13 | oveq1 | |- ( i = 1 -> ( i + 3 ) = ( 1 + 3 ) ) |
|
| 14 | 3cn | |- 3 e. CC |
|
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 17 | 14 15 16 | addcomli | |- ( 1 + 3 ) = 4 |
| 18 | 13 17 | eqtrdi | |- ( i = 1 -> ( i + 3 ) = 4 ) |
| 19 | 18 | oveq1d | |- ( i = 1 -> ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) = ( 4 x. ( 2 ^ ( n + 1 ) ) ) ) |
| 20 | 19 | oveq1d | |- ( i = 1 -> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) |
| 21 | 20 | adantl | |- ( ( n e. NN0 /\ i = 1 ) -> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) |
| 22 | 1nn0 | |- 1 e. NN0 |
|
| 23 | 22 | a1i | |- ( n e. NN0 -> 1 e. NN0 ) |
| 24 | ovexd | |- ( n e. NN0 -> ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) e. _V ) |
|
| 25 | 12 21 23 24 | fvmptd | |- ( n e. NN0 -> ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) |
| 26 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 27 | 26 | eqcomi | |- 4 = ( 2 ^ 2 ) |
| 28 | 27 | a1i | |- ( n e. NN0 -> 4 = ( 2 ^ 2 ) ) |
| 29 | 28 | oveq1d | |- ( n e. NN0 -> ( 4 x. ( 2 ^ ( n + 1 ) ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ ( n + 1 ) ) ) ) |
| 30 | 2cnd | |- ( n e. NN0 -> 2 e. CC ) |
|
| 31 | 3 | a1i | |- ( n e. NN0 -> 2 e. NN0 ) |
| 32 | 30 6 31 | expaddd | |- ( n e. NN0 -> ( 2 ^ ( 2 + ( n + 1 ) ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ ( n + 1 ) ) ) ) |
| 33 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 34 | 1cnd | |- ( n e. NN0 -> 1 e. CC ) |
|
| 35 | 30 33 34 | add12d | |- ( n e. NN0 -> ( 2 + ( n + 1 ) ) = ( n + ( 2 + 1 ) ) ) |
| 36 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 37 | 36 | oveq2i | |- ( n + ( 2 + 1 ) ) = ( n + 3 ) |
| 38 | 35 37 | eqtrdi | |- ( n e. NN0 -> ( 2 + ( n + 1 ) ) = ( n + 3 ) ) |
| 39 | 38 | oveq2d | |- ( n e. NN0 -> ( 2 ^ ( 2 + ( n + 1 ) ) ) = ( 2 ^ ( n + 3 ) ) ) |
| 40 | 29 32 39 | 3eqtr2d | |- ( n e. NN0 -> ( 4 x. ( 2 ^ ( n + 1 ) ) ) = ( 2 ^ ( n + 3 ) ) ) |
| 41 | 40 | oveq1d | |- ( n e. NN0 -> ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
| 42 | 11 25 41 | 3eqtrd | |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
| 43 | 42 | mpteq2ia | |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
| 44 | 2 5 43 | 3eqtri | |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |