This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval2 | ⊢ ( Ack ‘ 2 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 2 | 1 | fveq2i | ⊢ ( Ack ‘ 2 ) = ( Ack ‘ ( 1 + 1 ) ) |
| 3 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 4 | ackvalsuc1mpt | ⊢ ( 1 ∈ ℕ0 → ( Ack ‘ ( 1 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( Ack ‘ ( 1 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) |
| 6 | peano2nn0 | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) | |
| 7 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 8 | ackval1 | ⊢ ( Ack ‘ 1 ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + 2 ) ) | |
| 9 | 8 | itcovalpc | ⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ) |
| 10 | 6 7 9 | sylancl | ⊢ ( 𝑛 ∈ ℕ0 → ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ‘ 1 ) ) |
| 12 | eqidd | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ) | |
| 13 | oveq1 | ⊢ ( 𝑖 = 1 → ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) = ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑖 = 1 ) → ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) = ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ) |
| 15 | 3 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℕ0 ) |
| 16 | ovexd | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ∈ V ) | |
| 17 | 12 14 15 16 | fvmptd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 + ( 2 · ( 𝑛 + 1 ) ) ) ) ‘ 1 ) = ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) ) |
| 18 | nn0cn | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) | |
| 19 | 1cnd | ⊢ ( 𝑛 ∈ ℂ → 1 ∈ ℂ ) | |
| 20 | 2cnd | ⊢ ( 𝑛 ∈ ℂ → 2 ∈ ℂ ) | |
| 21 | peano2cn | ⊢ ( 𝑛 ∈ ℂ → ( 𝑛 + 1 ) ∈ ℂ ) | |
| 22 | 20 21 | mulcld | ⊢ ( 𝑛 ∈ ℂ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 23 | 19 22 | addcomd | ⊢ ( 𝑛 ∈ ℂ → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) = ( ( 2 · ( 𝑛 + 1 ) ) + 1 ) ) |
| 24 | id | ⊢ ( 𝑛 ∈ ℂ → 𝑛 ∈ ℂ ) | |
| 25 | 20 24 19 | adddid | ⊢ ( 𝑛 ∈ ℂ → ( 2 · ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( 𝑛 ∈ ℂ → ( ( 2 · ( 𝑛 + 1 ) ) + 1 ) = ( ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) + 1 ) ) |
| 27 | 20 24 | mulcld | ⊢ ( 𝑛 ∈ ℂ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 28 | 20 19 | mulcld | ⊢ ( 𝑛 ∈ ℂ → ( 2 · 1 ) ∈ ℂ ) |
| 29 | 27 28 19 | addassd | ⊢ ( 𝑛 ∈ ℂ → ( ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) + 1 ) = ( ( 2 · 𝑛 ) + ( ( 2 · 1 ) + 1 ) ) ) |
| 30 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 31 | 30 | oveq1i | ⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
| 32 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 33 | 31 32 | eqtri | ⊢ ( ( 2 · 1 ) + 1 ) = 3 |
| 34 | 33 | a1i | ⊢ ( 𝑛 ∈ ℂ → ( ( 2 · 1 ) + 1 ) = 3 ) |
| 35 | 34 | oveq2d | ⊢ ( 𝑛 ∈ ℂ → ( ( 2 · 𝑛 ) + ( ( 2 · 1 ) + 1 ) ) = ( ( 2 · 𝑛 ) + 3 ) ) |
| 36 | 29 35 | eqtrd | ⊢ ( 𝑛 ∈ ℂ → ( ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) + 1 ) = ( ( 2 · 𝑛 ) + 3 ) ) |
| 37 | 23 26 36 | 3eqtrd | ⊢ ( 𝑛 ∈ ℂ → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) = ( ( 2 · 𝑛 ) + 3 ) ) |
| 38 | 18 37 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 + ( 2 · ( 𝑛 + 1 ) ) ) = ( ( 2 · 𝑛 ) + 3 ) ) |
| 39 | 11 17 38 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( 2 · 𝑛 ) + 3 ) ) |
| 40 | 39 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 1 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 3 ) ) |
| 41 | 2 5 40 | 3eqtri | ⊢ ( Ack ‘ 2 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 3 ) ) |