This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of the "plus a constant" function with regard to composition. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcovalpc.f | |- F = ( n e. NN0 |-> ( n + C ) ) |
|
| Assertion | itcovalpc | |- ( ( I e. NN0 /\ C e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalpc.f | |- F = ( n e. NN0 |-> ( n + C ) ) |
|
| 2 | fveq2 | |- ( x = 0 -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` 0 ) ) |
|
| 3 | oveq2 | |- ( x = 0 -> ( C x. x ) = ( C x. 0 ) ) |
|
| 4 | 3 | oveq2d | |- ( x = 0 -> ( n + ( C x. x ) ) = ( n + ( C x. 0 ) ) ) |
| 5 | 4 | mpteq2dv | |- ( x = 0 -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) |
| 6 | 2 5 | eqeq12d | |- ( x = 0 -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) ) |
| 7 | fveq2 | |- ( x = y -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` y ) ) |
|
| 8 | oveq2 | |- ( x = y -> ( C x. x ) = ( C x. y ) ) |
|
| 9 | 8 | oveq2d | |- ( x = y -> ( n + ( C x. x ) ) = ( n + ( C x. y ) ) ) |
| 10 | 9 | mpteq2dv | |- ( x = y -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) |
| 11 | 7 10 | eqeq12d | |- ( x = y -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) ) |
| 12 | fveq2 | |- ( x = ( y + 1 ) -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` ( y + 1 ) ) ) |
|
| 13 | oveq2 | |- ( x = ( y + 1 ) -> ( C x. x ) = ( C x. ( y + 1 ) ) ) |
|
| 14 | 13 | oveq2d | |- ( x = ( y + 1 ) -> ( n + ( C x. x ) ) = ( n + ( C x. ( y + 1 ) ) ) ) |
| 15 | 14 | mpteq2dv | |- ( x = ( y + 1 ) -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) |
| 16 | 12 15 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) ) |
| 17 | fveq2 | |- ( x = I -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` I ) ) |
|
| 18 | oveq2 | |- ( x = I -> ( C x. x ) = ( C x. I ) ) |
|
| 19 | 18 | oveq2d | |- ( x = I -> ( n + ( C x. x ) ) = ( n + ( C x. I ) ) ) |
| 20 | 19 | mpteq2dv | |- ( x = I -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) ) |
| 21 | 17 20 | eqeq12d | |- ( x = I -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) ) ) |
| 22 | 1 | itcovalpclem1 | |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) |
| 23 | 1 | itcovalpclem2 | |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) ) |
| 24 | 23 | ancoms | |- ( ( C e. NN0 /\ y e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) ) |
| 25 | 24 | imp | |- ( ( ( C e. NN0 /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) |
| 26 | 6 11 16 21 22 25 | nn0indd | |- ( ( C e. NN0 /\ I e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) ) |
| 27 | 26 | ancoms | |- ( ( I e. NN0 /\ C e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) ) |