This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| ackbij.g | |- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
||
| Assertion | ackbij2lem4 | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | ackbij.g | |- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
|
| 3 | fveq2 | |- ( a = B -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` B ) ) |
|
| 4 | 3 | sseq2d | |- ( a = B -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` B ) ) ) |
| 5 | fveq2 | |- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
|
| 6 | 5 | sseq2d | |- ( a = b -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` b ) ) ) |
| 7 | fveq2 | |- ( a = suc b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` suc b ) ) |
|
| 8 | 7 | sseq2d | |- ( a = suc b -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` suc b ) ) ) |
| 9 | fveq2 | |- ( a = A -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` A ) ) |
|
| 10 | 9 | sseq2d | |- ( a = A -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` A ) ) ) |
| 11 | ssidd | |- ( B e. _om -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` B ) ) |
|
| 12 | 1 2 | ackbij2lem3 | |- ( b e. _om -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` suc b ) ) |
| 13 | 12 | ad2antrr | |- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` suc b ) ) |
| 14 | sstr2 | |- ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` b ) -> ( ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` suc b ) -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` suc b ) ) ) |
|
| 15 | 13 14 | syl5com | |- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` b ) -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` suc b ) ) ) |
| 16 | 4 6 8 10 11 15 | findsg | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` A ) ) |