This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvres.a | |- A = ( AbsVal ` R ) |
|
| abvres.s | |- S = ( R |`s C ) |
||
| abvres.b | |- B = ( AbsVal ` S ) |
||
| Assertion | abvres | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvres.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvres.s | |- S = ( R |`s C ) |
|
| 3 | abvres.b | |- B = ( AbsVal ` S ) |
|
| 4 | 3 | a1i | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> B = ( AbsVal ` S ) ) |
| 5 | 2 | subrgbas | |- ( C e. ( SubRing ` R ) -> C = ( Base ` S ) ) |
| 6 | 5 | adantl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C = ( Base ` S ) ) |
| 7 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 8 | 2 7 | ressplusg | |- ( C e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` S ) ) |
| 9 | 8 | adantl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( +g ` R ) = ( +g ` S ) ) |
| 10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 11 | 2 10 | ressmulr | |- ( C e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 12 | 11 | adantl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( .r ` R ) = ( .r ` S ) ) |
| 13 | subrgsubg | |- ( C e. ( SubRing ` R ) -> C e. ( SubGrp ` R ) ) |
|
| 14 | 13 | adantl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C e. ( SubGrp ` R ) ) |
| 15 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 16 | 2 15 | subg0 | |- ( C e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 17 | 14 16 | syl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 18 | 2 | subrgring | |- ( C e. ( SubRing ` R ) -> S e. Ring ) |
| 19 | 18 | adantl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> S e. Ring ) |
| 20 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 21 | 1 20 | abvf | |- ( F e. A -> F : ( Base ` R ) --> RR ) |
| 22 | 20 | subrgss | |- ( C e. ( SubRing ` R ) -> C C_ ( Base ` R ) ) |
| 23 | fssres | |- ( ( F : ( Base ` R ) --> RR /\ C C_ ( Base ` R ) ) -> ( F |` C ) : C --> RR ) |
|
| 24 | 21 22 23 | syl2an | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) : C --> RR ) |
| 25 | 15 | subg0cl | |- ( C e. ( SubGrp ` R ) -> ( 0g ` R ) e. C ) |
| 26 | fvres | |- ( ( 0g ` R ) e. C -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) |
|
| 27 | 14 25 26 | 3syl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = ( F ` ( 0g ` R ) ) ) |
| 28 | 1 15 | abv0 | |- ( F e. A -> ( F ` ( 0g ` R ) ) = 0 ) |
| 29 | 28 | adantr | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
| 30 | 27 29 | eqtrd | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( ( F |` C ) ` ( 0g ` R ) ) = 0 ) |
| 31 | simp1l | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> F e. A ) |
|
| 32 | 22 | adantl | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> C C_ ( Base ` R ) ) |
| 33 | 32 | sselda | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C ) -> x e. ( Base ` R ) ) |
| 34 | 33 | 3adant3 | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x e. ( Base ` R ) ) |
| 35 | simp3 | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> x =/= ( 0g ` R ) ) |
|
| 36 | 1 20 15 | abvgt0 | |- ( ( F e. A /\ x e. ( Base ` R ) /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
| 37 | 31 34 35 36 | syl3anc | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( F ` x ) ) |
| 38 | fvres | |- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
|
| 39 | 38 | 3ad2ant2 | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
| 40 | 37 39 | breqtrrd | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ x e. C /\ x =/= ( 0g ` R ) ) -> 0 < ( ( F |` C ) ` x ) ) |
| 41 | simp1l | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> F e. A ) |
|
| 42 | simp1r | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C e. ( SubRing ` R ) ) |
|
| 43 | 42 22 | syl | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> C C_ ( Base ` R ) ) |
| 44 | simp2l | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. C ) |
|
| 45 | 43 44 | sseldd | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> x e. ( Base ` R ) ) |
| 46 | simp3l | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. C ) |
|
| 47 | 43 46 | sseldd | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> y e. ( Base ` R ) ) |
| 48 | 1 20 10 | abvmul | |- ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 49 | 41 45 47 48 | syl3anc | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 50 | 10 | subrgmcl | |- ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( .r ` R ) y ) e. C ) |
| 51 | 42 44 46 50 | syl3anc | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( .r ` R ) y ) e. C ) |
| 52 | 51 | fvresd | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( F ` ( x ( .r ` R ) y ) ) ) |
| 53 | 44 | fvresd | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
| 54 | 46 | fvresd | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` y ) = ( F ` y ) ) |
| 55 | 53 54 | oveq12d | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 56 | 49 52 55 | 3eqtr4d | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( .r ` R ) y ) ) = ( ( ( F |` C ) ` x ) x. ( ( F |` C ) ` y ) ) ) |
| 57 | 1 20 7 | abvtri | |- ( ( F e. A /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 58 | 41 45 47 57 | syl3anc | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 59 | 7 | subrgacl | |- ( ( C e. ( SubRing ` R ) /\ x e. C /\ y e. C ) -> ( x ( +g ` R ) y ) e. C ) |
| 60 | 42 44 46 59 | syl3anc | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( x ( +g ` R ) y ) e. C ) |
| 61 | 60 | fvresd | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 62 | 53 54 | oveq12d | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
| 63 | 58 61 62 | 3brtr4d | |- ( ( ( F e. A /\ C e. ( SubRing ` R ) ) /\ ( x e. C /\ x =/= ( 0g ` R ) ) /\ ( y e. C /\ y =/= ( 0g ` R ) ) ) -> ( ( F |` C ) ` ( x ( +g ` R ) y ) ) <_ ( ( ( F |` C ) ` x ) + ( ( F |` C ) ` y ) ) ) |
| 64 | 4 6 9 12 17 19 24 30 40 56 63 | isabvd | |- ( ( F e. A /\ C e. ( SubRing ` R ) ) -> ( F |` C ) e. B ) |