This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvtriv.a | |- A = ( AbsVal ` R ) |
|
| abvtriv.b | |- B = ( Base ` R ) |
||
| abvtriv.z | |- .0. = ( 0g ` R ) |
||
| abvtriv.f | |- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
||
| abvtrivd.1 | |- .x. = ( .r ` R ) |
||
| abvtrivd.2 | |- ( ph -> R e. Ring ) |
||
| abvtrivd.3 | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y .x. z ) =/= .0. ) |
||
| Assertion | abvtrivd | |- ( ph -> F e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvtriv.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvtriv.b | |- B = ( Base ` R ) |
|
| 3 | abvtriv.z | |- .0. = ( 0g ` R ) |
|
| 4 | abvtriv.f | |- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
|
| 5 | abvtrivd.1 | |- .x. = ( .r ` R ) |
|
| 6 | abvtrivd.2 | |- ( ph -> R e. Ring ) |
|
| 7 | abvtrivd.3 | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y .x. z ) =/= .0. ) |
|
| 8 | 1 | a1i | |- ( ph -> A = ( AbsVal ` R ) ) |
| 9 | 2 | a1i | |- ( ph -> B = ( Base ` R ) ) |
| 10 | eqidd | |- ( ph -> ( +g ` R ) = ( +g ` R ) ) |
|
| 11 | 5 | a1i | |- ( ph -> .x. = ( .r ` R ) ) |
| 12 | 3 | a1i | |- ( ph -> .0. = ( 0g ` R ) ) |
| 13 | 0re | |- 0 e. RR |
|
| 14 | 1re | |- 1 e. RR |
|
| 15 | 13 14 | ifcli | |- if ( x = .0. , 0 , 1 ) e. RR |
| 16 | 15 | a1i | |- ( ( ph /\ x e. B ) -> if ( x = .0. , 0 , 1 ) e. RR ) |
| 17 | 16 4 | fmptd | |- ( ph -> F : B --> RR ) |
| 18 | 2 3 | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| 19 | iftrue | |- ( x = .0. -> if ( x = .0. , 0 , 1 ) = 0 ) |
|
| 20 | c0ex | |- 0 e. _V |
|
| 21 | 19 4 20 | fvmpt | |- ( .0. e. B -> ( F ` .0. ) = 0 ) |
| 22 | 6 18 21 | 3syl | |- ( ph -> ( F ` .0. ) = 0 ) |
| 23 | 0lt1 | |- 0 < 1 |
|
| 24 | eqeq1 | |- ( x = y -> ( x = .0. <-> y = .0. ) ) |
|
| 25 | 24 | ifbid | |- ( x = y -> if ( x = .0. , 0 , 1 ) = if ( y = .0. , 0 , 1 ) ) |
| 26 | 1ex | |- 1 e. _V |
|
| 27 | 20 26 | ifex | |- if ( y = .0. , 0 , 1 ) e. _V |
| 28 | 25 4 27 | fvmpt | |- ( y e. B -> ( F ` y ) = if ( y = .0. , 0 , 1 ) ) |
| 29 | ifnefalse | |- ( y =/= .0. -> if ( y = .0. , 0 , 1 ) = 1 ) |
|
| 30 | 28 29 | sylan9eq | |- ( ( y e. B /\ y =/= .0. ) -> ( F ` y ) = 1 ) |
| 31 | 30 | 3adant1 | |- ( ( ph /\ y e. B /\ y =/= .0. ) -> ( F ` y ) = 1 ) |
| 32 | 23 31 | breqtrrid | |- ( ( ph /\ y e. B /\ y =/= .0. ) -> 0 < ( F ` y ) ) |
| 33 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 34 | 33 | eqcomi | |- 1 = ( 1 x. 1 ) |
| 35 | 6 | 3ad2ant1 | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> R e. Ring ) |
| 36 | simp2l | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> y e. B ) |
|
| 37 | simp3l | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> z e. B ) |
|
| 38 | 2 5 | ringcl | |- ( ( R e. Ring /\ y e. B /\ z e. B ) -> ( y .x. z ) e. B ) |
| 39 | 35 36 37 38 | syl3anc | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y .x. z ) e. B ) |
| 40 | eqeq1 | |- ( x = ( y .x. z ) -> ( x = .0. <-> ( y .x. z ) = .0. ) ) |
|
| 41 | 40 | ifbid | |- ( x = ( y .x. z ) -> if ( x = .0. , 0 , 1 ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
| 42 | 20 26 | ifex | |- if ( ( y .x. z ) = .0. , 0 , 1 ) e. _V |
| 43 | 41 4 42 | fvmpt | |- ( ( y .x. z ) e. B -> ( F ` ( y .x. z ) ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
| 44 | 39 43 | syl | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = if ( ( y .x. z ) = .0. , 0 , 1 ) ) |
| 45 | 7 | neneqd | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. ( y .x. z ) = .0. ) |
| 46 | 45 | iffalsed | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( ( y .x. z ) = .0. , 0 , 1 ) = 1 ) |
| 47 | 44 46 | eqtrd | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = 1 ) |
| 48 | 36 28 | syl | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` y ) = if ( y = .0. , 0 , 1 ) ) |
| 49 | simp2r | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> y =/= .0. ) |
|
| 50 | 49 | neneqd | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. y = .0. ) |
| 51 | 50 | iffalsed | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( y = .0. , 0 , 1 ) = 1 ) |
| 52 | 48 51 | eqtrd | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` y ) = 1 ) |
| 53 | eqeq1 | |- ( x = z -> ( x = .0. <-> z = .0. ) ) |
|
| 54 | 53 | ifbid | |- ( x = z -> if ( x = .0. , 0 , 1 ) = if ( z = .0. , 0 , 1 ) ) |
| 55 | 20 26 | ifex | |- if ( z = .0. , 0 , 1 ) e. _V |
| 56 | 54 4 55 | fvmpt | |- ( z e. B -> ( F ` z ) = if ( z = .0. , 0 , 1 ) ) |
| 57 | 37 56 | syl | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` z ) = if ( z = .0. , 0 , 1 ) ) |
| 58 | simp3r | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> z =/= .0. ) |
|
| 59 | 58 | neneqd | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> -. z = .0. ) |
| 60 | 59 | iffalsed | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( z = .0. , 0 , 1 ) = 1 ) |
| 61 | 57 60 | eqtrd | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` z ) = 1 ) |
| 62 | 52 61 | oveq12d | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( F ` y ) x. ( F ` z ) ) = ( 1 x. 1 ) ) |
| 63 | 34 47 62 | 3eqtr4a | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y .x. z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
| 64 | breq1 | |- ( 0 = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) -> ( 0 <_ 2 <-> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 ) ) |
|
| 65 | breq1 | |- ( 1 = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) -> ( 1 <_ 2 <-> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 ) ) |
|
| 66 | 0le2 | |- 0 <_ 2 |
|
| 67 | 1le2 | |- 1 <_ 2 |
|
| 68 | 64 65 66 67 | keephyp | |- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ 2 |
| 69 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 70 | 68 69 | breqtri | |- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ ( 1 + 1 ) |
| 71 | 70 | a1i | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) <_ ( 1 + 1 ) ) |
| 72 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 73 | 6 72 | syl | |- ( ph -> R e. Grp ) |
| 74 | 73 | 3ad2ant1 | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> R e. Grp ) |
| 75 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 76 | 2 75 | grpcl | |- ( ( R e. Grp /\ y e. B /\ z e. B ) -> ( y ( +g ` R ) z ) e. B ) |
| 77 | 74 36 37 76 | syl3anc | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( +g ` R ) z ) e. B ) |
| 78 | eqeq1 | |- ( x = ( y ( +g ` R ) z ) -> ( x = .0. <-> ( y ( +g ` R ) z ) = .0. ) ) |
|
| 79 | 78 | ifbid | |- ( x = ( y ( +g ` R ) z ) -> if ( x = .0. , 0 , 1 ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
| 80 | 20 26 | ifex | |- if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) e. _V |
| 81 | 79 4 80 | fvmpt | |- ( ( y ( +g ` R ) z ) e. B -> ( F ` ( y ( +g ` R ) z ) ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
| 82 | 77 81 | syl | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y ( +g ` R ) z ) ) = if ( ( y ( +g ` R ) z ) = .0. , 0 , 1 ) ) |
| 83 | 52 61 | oveq12d | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( ( F ` y ) + ( F ` z ) ) = ( 1 + 1 ) ) |
| 84 | 71 82 83 | 3brtr4d | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) |
| 85 | 8 9 10 11 12 6 17 22 32 63 84 | isabvd | |- ( ph -> F e. A ) |