This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | |- A = ( AbsVal ` R ) |
|
| abvf.b | |- B = ( Base ` R ) |
||
| abveq0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | abvgt0 | |- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> 0 < ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvf.b | |- B = ( Base ` R ) |
|
| 3 | abveq0.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 2 | abvcl | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 5 | 4 | 3adant3 | |- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) e. RR ) |
| 6 | 1 2 | abvge0 | |- ( ( F e. A /\ X e. B ) -> 0 <_ ( F ` X ) ) |
| 7 | 6 | 3adant3 | |- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> 0 <_ ( F ` X ) ) |
| 8 | 1 2 3 | abvne0 | |- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 ) |
| 9 | 5 7 8 | ne0gt0d | |- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> 0 < ( F ` X ) ) |