This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absrdbnd | |- ( A e. RR -> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) <_ ( ( |_ ` ( abs ` A ) ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfre | |- ( 1 / 2 ) e. RR |
|
| 2 | readdcl | |- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR -> ( A + ( 1 / 2 ) ) e. RR ) |
| 4 | reflcl | |- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
| 6 | 5 | recnd | |- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
| 7 | abscl | |- ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC -> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) e. RR ) |
|
| 8 | 6 7 | syl | |- ( A e. RR -> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) e. RR ) |
| 9 | recn | |- ( A e. RR -> A e. CC ) |
|
| 10 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 11 | 9 10 | syl | |- ( A e. RR -> ( abs ` A ) e. RR ) |
| 12 | 1re | |- 1 e. RR |
|
| 13 | 12 | a1i | |- ( A e. RR -> 1 e. RR ) |
| 14 | 8 11 | resubcld | |- ( A e. RR -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - ( abs ` A ) ) e. RR ) |
| 15 | resubcl | |- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR /\ A e. RR ) -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) e. RR ) |
|
| 16 | 5 15 | mpancom | |- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) e. RR ) |
| 17 | 16 | recnd | |- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) e. CC ) |
| 18 | abscl | |- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) e. CC -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
|
| 19 | 17 18 | syl | |- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
| 20 | abs2dif | |- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC /\ A e. CC ) -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - ( abs ` A ) ) <_ ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
|
| 21 | 6 9 20 | syl2anc | |- ( A e. RR -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - ( abs ` A ) ) <_ ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
| 22 | 1 | a1i | |- ( A e. RR -> ( 1 / 2 ) e. RR ) |
| 23 | rddif | |- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) ) |
|
| 24 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 25 | 1 12 24 | ltleii | |- ( 1 / 2 ) <_ 1 |
| 26 | 25 | a1i | |- ( A e. RR -> ( 1 / 2 ) <_ 1 ) |
| 27 | 19 22 13 23 26 | letrd | |- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ 1 ) |
| 28 | 14 19 13 21 27 | letrd | |- ( A e. RR -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - ( abs ` A ) ) <_ 1 ) |
| 29 | 8 11 13 28 | subled | |- ( A e. RR -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) <_ ( abs ` A ) ) |
| 30 | 3 | flcld | |- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. ZZ ) |
| 31 | nn0abscl | |- ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. ZZ -> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) e. NN0 ) |
|
| 32 | 30 31 | syl | |- ( A e. RR -> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) e. NN0 ) |
| 33 | 32 | nn0zd | |- ( A e. RR -> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) e. ZZ ) |
| 34 | peano2zm | |- ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) e. ZZ -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) e. ZZ ) |
|
| 35 | 33 34 | syl | |- ( A e. RR -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) e. ZZ ) |
| 36 | flge | |- ( ( ( abs ` A ) e. RR /\ ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) e. ZZ ) -> ( ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) <_ ( abs ` A ) <-> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) <_ ( |_ ` ( abs ` A ) ) ) ) |
|
| 37 | 11 35 36 | syl2anc | |- ( A e. RR -> ( ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) <_ ( abs ` A ) <-> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) <_ ( |_ ` ( abs ` A ) ) ) ) |
| 38 | 29 37 | mpbid | |- ( A e. RR -> ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) <_ ( |_ ` ( abs ` A ) ) ) |
| 39 | reflcl | |- ( ( abs ` A ) e. RR -> ( |_ ` ( abs ` A ) ) e. RR ) |
|
| 40 | 11 39 | syl | |- ( A e. RR -> ( |_ ` ( abs ` A ) ) e. RR ) |
| 41 | 8 13 40 | lesubaddd | |- ( A e. RR -> ( ( ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) - 1 ) <_ ( |_ ` ( abs ` A ) ) <-> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) <_ ( ( |_ ` ( abs ` A ) ) + 1 ) ) ) |
| 42 | 38 41 | mpbid | |- ( A e. RR -> ( abs ` ( |_ ` ( A + ( 1 / 2 ) ) ) ) <_ ( ( |_ ` ( abs ` A ) ) + 1 ) ) |