This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rddif | |- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 2 | 1 | 2timesi | |- ( 2 x. ( 1 / 2 ) ) = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
| 3 | 2cn | |- 2 e. CC |
|
| 4 | 2ne0 | |- 2 =/= 0 |
|
| 5 | 3 4 | recidi | |- ( 2 x. ( 1 / 2 ) ) = 1 |
| 6 | 2 5 | eqtr3i | |- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 7 | 6 | oveq2i | |- ( ( A - ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( A - ( 1 / 2 ) ) + 1 ) |
| 8 | recn | |- ( A e. RR -> A e. CC ) |
|
| 9 | 1 | a1i | |- ( A e. RR -> ( 1 / 2 ) e. CC ) |
| 10 | 8 9 9 | nppcan3d | |- ( A e. RR -> ( ( A - ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( A + ( 1 / 2 ) ) ) |
| 11 | 7 10 | eqtr3id | |- ( A e. RR -> ( ( A - ( 1 / 2 ) ) + 1 ) = ( A + ( 1 / 2 ) ) ) |
| 12 | halfre | |- ( 1 / 2 ) e. RR |
|
| 13 | readdcl | |- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
|
| 14 | 12 13 | mpan2 | |- ( A e. RR -> ( A + ( 1 / 2 ) ) e. RR ) |
| 15 | fllep1 | |- ( ( A + ( 1 / 2 ) ) e. RR -> ( A + ( 1 / 2 ) ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
|
| 16 | 14 15 | syl | |- ( A e. RR -> ( A + ( 1 / 2 ) ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
| 17 | 11 16 | eqbrtrd | |- ( A e. RR -> ( ( A - ( 1 / 2 ) ) + 1 ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
| 18 | resubcl | |- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A - ( 1 / 2 ) ) e. RR ) |
|
| 19 | 12 18 | mpan2 | |- ( A e. RR -> ( A - ( 1 / 2 ) ) e. RR ) |
| 20 | reflcl | |- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
|
| 21 | 14 20 | syl | |- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
| 22 | 1red | |- ( A e. RR -> 1 e. RR ) |
|
| 23 | 19 21 22 | leadd1d | |- ( A e. RR -> ( ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) <-> ( ( A - ( 1 / 2 ) ) + 1 ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) ) |
| 24 | 17 23 | mpbird | |- ( A e. RR -> ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) ) |
| 25 | flle | |- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) |
|
| 26 | 14 25 | syl | |- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) |
| 27 | id | |- ( A e. RR -> A e. RR ) |
|
| 28 | 12 | a1i | |- ( A e. RR -> ( 1 / 2 ) e. RR ) |
| 29 | absdifle | |- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR /\ A e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) <-> ( ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) /\ ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) ) ) |
|
| 30 | 21 27 28 29 | syl3anc | |- ( A e. RR -> ( ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) <-> ( ( A - ( 1 / 2 ) ) <_ ( |_ ` ( A + ( 1 / 2 ) ) ) /\ ( |_ ` ( A + ( 1 / 2 ) ) ) <_ ( A + ( 1 / 2 ) ) ) ) ) |
| 31 | 24 26 30 | mpbir2and | |- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) ) |