This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absrdbnd | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ≤ ( ( ⌊ ‘ ( abs ‘ 𝐴 ) ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 2 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 4 | reflcl | ⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ) |
| 7 | abscl | ⊢ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℝ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℝ ) |
| 9 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 10 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 12 | 1re | ⊢ 1 ∈ ℝ | |
| 13 | 12 | a1i | ⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℝ ) |
| 14 | 8 11 | resubcld | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 | resubcl | ⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℝ ) | |
| 16 | 5 15 | mpancom | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℂ ) |
| 18 | abscl | ⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℂ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) |
| 20 | abs2dif | ⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ≤ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) | |
| 21 | 6 9 20 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ≤ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) |
| 22 | 1 | a1i | ⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℝ ) |
| 23 | rddif | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ) | |
| 24 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 25 | 1 12 24 | ltleii | ⊢ ( 1 / 2 ) ≤ 1 |
| 26 | 25 | a1i | ⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ≤ 1 ) |
| 27 | 19 22 13 23 26 | letrd | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ 1 ) |
| 28 | 14 19 13 21 27 | letrd | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − ( abs ‘ 𝐴 ) ) ≤ 1 ) |
| 29 | 8 11 13 28 | subled | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( abs ‘ 𝐴 ) ) |
| 30 | 3 | flcld | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ ) |
| 31 | nn0abscl | ⊢ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℕ0 ) | |
| 32 | 30 31 | syl | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℕ0 ) |
| 33 | 32 | nn0zd | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℤ ) |
| 34 | peano2zm | ⊢ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ∈ ℤ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ∈ ℤ ) | |
| 35 | 33 34 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ∈ ℤ ) |
| 36 | flge | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ∈ ℤ ) → ( ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ) ) | |
| 37 | 11 35 36 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 38 | 29 37 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ) |
| 39 | reflcl | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) | |
| 40 | 11 39 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 41 | 8 13 40 | lesubaddd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) − 1 ) ≤ ( ⌊ ‘ ( abs ‘ 𝐴 ) ) ↔ ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ≤ ( ( ⌊ ‘ ( abs ‘ 𝐴 ) ) + 1 ) ) ) |
| 42 | 38 41 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ≤ ( ( ⌊ ‘ ( abs ‘ 𝐴 ) ) + 1 ) ) |